
Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

FAUST2SMARTPHONE: A GENERATOR FOR MUSICAL MOBILE APPLICATION

Weng Ruolun

 Dept. of Music Engineering
 Shanghai Conservatory of Music

Shanghai, China
allen1991shcm@gmail.com

1. OVERVIEW

We introduce faust2smartphone, a tool to generate editable musi-
cal mobile application projects using the Faust programming lan-
guage. faust2smartphone works as an extension of faust2api.
Faust DSP objects can be easily embedded as a high level API so
that developers can access various functions and elements across
different mobile platforms.
Mobile devices are increasingly used as musical instruments in
the context of interactive performances and installations.
Current real-time audio or DSP APIs provided by common de-
velopment environments are written in different programming
languages and not easily approachable by composers and sound
engineers of interactive electronic music.
The Faust architectures and faust2api allow us to focus more on
sound design in Faust. The Faust distribution already comes with
a comprehensive series of tools to generate mobile applications
such as faust2ios, faust2android, and faust2smartkeyb, so why
we create a new one?
We already use faust2ios and faust2android in the framework of
the SmartFaust project to generate applications with standard
Faust user interfaces (e.g., sliders, buttons, etc). faust2smartkeyb
is specifically designed to make smartphone-based musical in-
struments with a keyboard interface. It also requires the use of a
specific metadata declaration. These two sets of tools are rela-
tively closed environments, making customization and integra-
tion with other frameworks hard.
On the other hand, faust2api is a generic tool to generate a set of
API files for different platforms including mobile devices. How-
ever, it only creates a raw files package with one C++ and one
header file that needs to be re-generated each time a new project
is started from scratch.
We wanted to extend the capabilities of faust2api by adding more
specific functions to facilitate the development of musical mobile
applications.
In this paper, we present faust2smartphone which provides the
same features on iOS and Android (Windows phone are not sup-
ported yet).
For now, faust2smartphone is a separate branch and maintained
on Github. Normally it should work with the latest version of the
Faust official branch. You can find all the source of this project
on https:/ /github.com/RuolunWeng/faust2smartphone.git .

As illustrated in Figure 1, faust2smartphone inherits from
faust2api.

Figure 1: Implementation of faust2smartphone.

1.1. Simple mode

When simple mode is used, faust2api is automatically called and
copies the generated files (e.g., DspFaust.cpp and DspFaust.h) to
a template XCode or Android Studio project. That is what we call
an “edit-ready” project, which bears the same name as the Faust
code, embeds the Faust audio DSP engine and is ready to be
used. This project is just a workplace to start, all the faust2api
functions can be used and custom interfaces can be designed.

1.2. Motion mode

This special mode is based on motion.lib and can be used as a
platform to prototype musical applications involving motion ges-
tures. motion.lib uses the accelerometer, gyroscope, and rotation
matrix signals provided by smartphones as an input. The output
is the result of sensor’s processing.
In this mode (see Figure 2), we have two DSP engines:

• DspFaust, which is the same as in simple mode and
that is used for audio signal processing;

• DspFaustMotion, which is the pre-compiled engine for
our motion processing.

This is an engine modified from the simple DspFaust structure in
order to process motion rather than audio data, and hence is not
driven by the audio driver like CoreAudio in iOS. The engine

https://github.com/RuolunWeng/faust2smartphone.git
https://github.com/RuolunWeng/faust2smartphone.git

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

runs at the sample rate of DspFaust divided by the buffer size of
the DspFaust and a block size of 1. We think that this is enough
for motion. Using audio processing rate for the sensors seems too
expensive, that’s also why we don’t import motion.lib directly in
the Faust code.
How to retrieve the sensor values and get the corresponding re-
sult from the DspFaustMotion engine? We decided to provide ac-
cess to the inputs and outputs of the motion engine, which means
that we can send the sensor’s value and get the result through two
new functions: setInput() and getOutput().
Next question is how we check in the motion.lib which function
the Faust code wants to call and how to affect the right controller.
The first thing we need to do is a declaration in the metadata of
the controller:
 toto=hslider(“toto[motion:ixp]”,0,0,1,0.01)
 “motion” is the keyword, followed by which function you want
to call in the motion.lib.
By default, all the processes in motion.lib are muted to save CPU
consumption; only if the program detects that you call the func-
tion, it will activate the corresponding process and affect this
controller with the result calculated.
We have some other reserved keywords declarations :
toto=checkbox(“touchgate”);
tata=nentry(“cue”,0,0,5,1);
titi=hslider(“screenx/screeny”,0,0,1,0.01);

This suite works with a sub-mode of motion mode, we call it cue-
Manager. We provide a simple interface for this mode to deal
with the code composed with different cues. To active cueMan-
ager, you just need to add –cuemanager in the command line.

Figure 2: Motion mode.

1.3. Plug-in mode

This mode is not an audio VST plug-in generator. The idea is to
have an engine which uses Faust code to process non-audio sig-
nals, which is simplified version of DspFaustMotion from the
motion mode. We can use this for any parameter of videos or im-
ages.
For example, if we want to use the amplitude of an oscillator to
control the alpha of the screen, the output of os.osci(0.5)
can be connected to the alpha parameter. The user then needs to
configure this manually in the script using the methods we al-
ready provide: render() and getOutput().

2. APPLICATION

faust2smartphone has already been used in these productions:

 “Audio Guide” is an application designed by Christophe Lebre-
ton and me for blind person to experience a special sound map in
the project created by GRAME and La Maison des Aveugles à
Lyon. Based on the sound processing generated by faust2smart-
phone, we combine another framework in iOS,
CoreLocation/CLBeacon for the Beacon part, which allows Blue-
tooth devices to broadcast or receive tiny and static pieces of data
within short distances. Check the introduction online:
http://www.grame.fr/events/carte-sonore-de-traces-en-traces.
A brand new creation named “Virtual Rhizome” at 2018 Bien-
nale of Music in Lyon, created by Vincent-Raphaël Carinola and
Christophe Lebreton, a solo performer armed by two smart-
phones, is diving into a virtual sound architecture that he must
dispense and that changes every moment. We use the motion
mode in faust2smartphone, with an interface modified from the
cueManager sub-mode. You can check a video clip online:
https://www.youtube.com/watch?v=cGZB44KI9Y0 .
“sfPivoine” is a mobile application which I created for a partici-
pative performance selected by International Computer Music
Conference(ICMC) 2018, “Pivone, for Pipa, Electronic music,
Kunqu Opera and Smartphones of public”. The spectators could
have an immersive and augmented experience with their partici-
pations. This application merges the project generated by
faust2smartphone and the simple audio-visual part using some
animation and the Augmented Reality. The application is both
available at App Store and Google Play.

3. REFERENCES

[1] R. Michon, J. Smith, S. Letz, C. Chafe and Y. Orlarey,
" faust2api: a Comprehensive API Generator for Android
and iOS," in Proceedings of the Linux Audio Conference
(LAC-17), Saint-Etienne, France, 2017.

[2] R. Michon, J. O. Smith, C. Chafe, M. Wright and G. Wang,
"Nuance: Adding Multi-Touch Force Detection to the iPad,"
in Proceedings of the Sound and Music Computing Confer-
ence (SMC-16), Hamburg, Germany, 2016.

[3] R. Michon, J. Smith and Y. Orlarey, "New Signal Process-
ing Libraries for Faust," in Proceedings of the Linux Audio
Conference (LAC-17), Saint-Etienne, France, 2017.

[4] R. Michon, J. O. Smith and Y. Orlarey, "MobileFaust: a Set
of Tools to Make Musical Mobile Applications with the
Faust Programming Language," in Proceedings of the Inter-
national Conference on New Interfaces for Musical Expres-
sion, Baton Rouge, USA, 2015.

[5] R. Michon, "Faust2android: a Faust Architecture for An-
droid," in Proceedings of the 16th International Conference
on Digital Audio Effects (DAFx-2013), National University
of Ireland, Maynooth, Ireland, Sept. 2-5, 2013.

[6] Yann Orlarey, Stéphane Letz, and Dominique Fober, New
Computational Paradigms for Computer Music, chapter
“Faust: an Efficient Functional Approach to DSP Program-
ming”, Delatour: Paris, France, 2009.

[7] Julius O. Smith, “Signal processing libraries for Faust,” in
Proceedings of Linux Audio Conference (LAC-12), Stanford,
USA, May 2012.

https://lac2017.univ-st-etienne.fr/en/accueil-2/
https://lac2017.univ-st-etienne.fr/en/accueil-2/
http://dafx13.nuim.ie/
http://dafx13.nuim.ie/
http://dafx13.nuim.ie/
https://nime2015.lsu.edu/
https://nime2015.lsu.edu/
https://nime2015.lsu.edu/
https://lac2017.univ-st-etienne.fr/en/accueil-2/
https://lac2017.univ-st-etienne.fr/en/accueil-2/
http://quintetnet.hfmt-hamburg.de/SMC2016
http://quintetnet.hfmt-hamburg.de/SMC2016
https://ccrma.stanford.edu/~rmichon/publications/doc/LAC2017-faust2api.pdf
https://ccrma.stanford.edu/~rmichon/publications/doc/LAC2017-faust2api.pdf
https://ccrma.stanford.edu/~rmichon/publications/doc/DAFx13-Faust2android.pdf
https://ccrma.stanford.edu/~rmichon/publications/doc/DAFx13-Faust2android.pdf
https://ccrma.stanford.edu/~rmichon/publications/doc/NIME15-mobileFaust.pdf
https://ccrma.stanford.edu/~rmichon/publications/doc/NIME15-mobileFaust.pdf
https://ccrma.stanford.edu/~rmichon/publications/doc/NIME15-mobileFaust.pdf
https://ccrma.stanford.edu/~rmichon/publications/doc/LAC2017-faustLibs.pdf
https://ccrma.stanford.edu/~rmichon/publications/doc/LAC2017-faustLibs.pdf
https://ccrma.stanford.edu/~rmichon/publications/doc/SMC16-nuance.pdf
http://www.grame.fr/events/carte-sonore-de-traces-en-traces
https://www.youtube.com/watch?v=cGZB44KI9Y0

	1. Overview
	1.1. Simple mode
	1.2. Motion mode
	1.3. Plug-in mode

	2. application
	3. REFERENCES

