
Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

FAUST2SMARTKEYB: A TOOL TO MAKE MOBILE INSTRUMENTS FOCUSING ON
SKILLS TRANSFER IN THE FAUST PROGRAMMING LANGUAGE

Romain Michon1,2, Julius O. Smith1, Chris Chafe1, Ge Wang1, and Matthew Wright1

1Center for Computer Research in Music and Acoustics (CCRMA), Stanford University, USA
2GRAME – Centre National de Création Musicale, Lyon, France

rmichon@ccrma.stanford.edu

ABSTRACT
In this paper, we present faust2smartkeyb, a tool to create
musical apps for Android and iOS using the FAUST programming
language. The use of musical instrument physical models in this
context through the FAUST Physical Modeling Library is empha-
sized. We also demonstrate how this system allows for the design
of interfaces facilitating skills transfer from existing musical in-
struments.

1. INTRODUCTION

Making musical apps for mobile devices involves the use and mas-
tery of various technologies, standards, programming languages,
and techniques ranging from low level C++ programming for real-
time DSP (Digital Signal Processing) to advanced interface de-
sign. This adds up to the variety of the platforms (e.g., iOS, An-
droid, etc.) and of their associated tools (e.g., Xcode, Android Stu-
dio, etc.), standards, and languages (e.g., JAVA, C++, Objective-C,
etc.).

While there exists a few tools to facilitate the design of musi-
cal apps such as libpd [1], Mobile CSOUND [2], and more recently
JUCE1 and SuperPowered,2 none of them provides a comprehen-
sive cross-platform environment for musical touchscreen interface
design, high level DSP programming, turnkey instrument physical
model prototyping, built-in sensors handling and mapping, MIDI
and OSC compatibility, etc.

faust2ios and faust2android [3] partially addressed
these issues. They are command line tools to convert FAUST [4]
code into fully working Android and iOS applications. The user
interface of apps generated using these systems corresponds to the
standard UI specifications provided in the FAUST code and is made
out of sliders, buttons, groups, etc. More recently, faust2api,
a lower level tool to generate audio engines with FAUST featuring
polyphony, built-in sensors mapping, MIDI and OSC (Open Sound
Control) support, etc., for a wide range of platforms including An-
droid and iOS was introduced [5].

Despite the fact that user interfaces better adapted to musical
applications (e.g., piano keyboards, (x, y) controllers, etc.) can
replace the standard UI of a FAUST object in apps generated by
faust2android [6], they are far from providing a generic so-
lution to capture musical gestures on a touchscreen and to allow
for musical skill transfer.

In this paper, we introduce faust2smartkeyb,3 a tool
based on faust2api to generate Android and iOS apps using

1https://www.juce.com All the URLs presented in this paper
were verified on March 12, 2018.

2http://superpowered.com
3faust2smartkeyb is now part of the FAUST distribution. Ad-

ditional information and documentation about this tool can be found

FAUST. faust2smartkeyb allows for the design of an ex-
tended number of musical interfaces and behaviors directly from
a FAUST code. First, we describe the implementation of the sys-
tem. Next, we demonstrate how to use it to implement a wide
range of behaviors and mappings. Finally, we present a series of
examples where physical models from the FAUST Physical Mod-
eling Library [7] are turned into standalone instruments using
faust2smartkeyb and implement various types of instrumen-
tal skills.

2. FAUST2SMARTKEYB

2.1. Apps Generation and General Implementation

faust2smartkeyb works the same way as most FAUST
targets/“architectures” [8] and can be called using the
faust2smartkeyb command-line tool:

faust2smartkeyb [options] faustFile.dsp

where faustFile.dsp is a FAUST file declaring a SMARTKEY-
BOARD interface (see §2.2) and [options] is a set of options
allowing us to configure general parameters of the generated app
(see Table 1).

Option Description
-android Generate an Android app
-ios Generate an iOS app
-effect Specify a FAUST effect file
-install Install the app on the device (Android only)
-nvoices Specify the number of polyphony voices of

the DSP engine
-reuse Reuse an existing app project (only update

what was changed)
-source Generate the source code of the app

Table 1: Selected faust2smartkeyb options.

The only required option is the app type (-android or -ios
). Unless specified otherwise (e.g., using the -source option),
faust2smartkeybwill compile the app directly in the terminal
and upload it on any Android device connected to the computer
if the -install option is provided. If -source is used, an
Xcode4 or an Android Studio5 project is generated, depending on
the selected app type.

on this webpage: https://ccrma.stanford.edu/~rmichon/
smartKeyboard/.

4https://developer.apple.com/xcode/
5https://developer.android.com/studio/

IFC-1

https://ccrma.stanford.edu
http://grame.fr
mailto:rmichon@ccrma.stanford.edu
https://www.juce.com
http://superpowered.com
https://ccrma.stanford.edu/~rmichon/smartKeyboard/
https://ccrma.stanford.edu/~rmichon/smartKeyboard/
https://developer.apple.com/xcode/
https://developer.android.com/studio/

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

faust2smartkeyb is based on faust2api [5] and takes
advantage of most of the features of this system. It provides
polyphony, MIDI, and OSC support and allows SMARTKEY-
BOARD interfaces to interact with the DSP portion of the app at
a very high level (see Figure 1).

faust2smartkeyb inherits some of faust2api’s op-
tions. For example, an external audio effect FAUST file can be
specified using -effect. This is very useful to save compu-
tation when implementing a polyphonic synthesizer. Similarly,
-nvoices can be used to override the default maximum num-
ber of polyphony voices (twelve) of the DSP engine generated by
faust2api.

The DSP engine generated by faust2api is transferred to
a template Xcode or Android Studio project (see Figure 1) and
contains the SMARTKEYBOARD declaration (see §2.2). The inter-
face of the app, which is implemented in JAVA on Android and in
Objective-C on iOS, is built from this declaration. While OSC sup-
port is built-in in the DSP engine and works both on iOS and An-
droid, MIDI support is only available on iOS thanks to Rt-MIDI.
On Android, raw MIDI messages are retrieved in the JAVA portion
of the app and “pushed” to the DSP engine. MIDI is only sup-
ported since Android-23 so faust2smartkeyb apps wont have
MIDI support on older Android versions.

2.2. Architecture of a Simple faust2smartkeyb Code

The SMARTKEYBOARD interface can be declared anywhere in a
FAUST file using the SmartKeyboard{} metadata:

declare interface "SmartKeyboard{
// configuration keys

}";

It is based on the idea that a wide range of touchscreen musi-
cal interface can be implemented as a set of keyboards with differ-
ent key numbers (like a table with columns and cells, essentially).
Various interfaces ranging from drum pads, isomorphic keyboards,
(x, y) controllers, wind instruments fingerings, etc. can be imple-
mented using this paradigm. The position of fingers in the inter-
face can be continuously tracked and transmitted to the DSP en-
gine both as high level parameters formatted by the system (e.g.,
frequency, note on/off, gain, etc.) or low level parameters (e.g.,
(x, y) position, key and keyboard ID, etc.). These parameters are
declared in the FAUST code using default parameter names (see
Table 2 for a summary).

By default, the screen interface is a polyphonic chromatic key-
board with thirteen keys whose lowest key is a C5 (MIDI note
number 60). A set of key/value pairs can be used to override the
default look and behavior of the interface (see Table 3). Code
Listing 1 presents the FAUST code of a simple app where two
identical keyboards can be used to control a simple synthesizer
based on a band-limited sawtooth wave oscillator and a simple ex-
ponential envelope generator. Since MIDI support is enabled by
default in apps generated by faust2smartkeyb and that the
SMARTKEYBOARD standard parameters are the same as the one
used for MIDI in FAUST, this app is also controllable by any MIDI
keyboard connected to the device running it. A screen-shot of the
interface of the app generated from Code Listing 1 can be seen in
Figure 2.

declare interface "SmartKeyboard{
’Number of Keyboards’:’2’

}";

Parameter Name Description
freq Base frequency (if any) of the current

note
bend Deviation from freq as a ratio (1 = no

deviation) for continuous pitch control
gate Note on (1) / Note off (0), typically

changes with freq
key Current key ID
keyboard Current keyboard ID
kbMfingers Number of fingers on a specific

keyboard M
kbMkNstatus Status of the current key N in

keyboard M
kbMkNx Normalized (0-1) x position of

a finger in key N in keyboard M
kbMkNy Normalized (0-1) y position of

a finger in key N in keyboard M
x Normalized (0-1) x position of

the finger in any key
y Normalized (0-1) y position of

the finger in any key
xN Normalized (0-1) x position of

finger N in a key
yN Normalized (0-1) y position of

finger N in a key

Table 2: SMARTKEYBOARD standard parameters overview.

import("stdfaust.lib");
f = nentry("freq",200,40,2000,0.01);
g = nentry("gain",1,0,1,0.01);
t = button("gate");
envelope = t*g : si.smoo;
process = os.sawtooth(f)*envelope <: _,_;

Listing 1: Simple SMARTKEYBOARD FAUST app.

2.3. Preparing a FAUST Code for Continuous Pitch Control

In faust2smartkeyb programs, pitch is handled using the
freq and bend standard parameters (see Table 2). The behav-
ior of the formatting of these parameters can be configured using
some of the keys presented in Table 3.

freq gives the “reference frequency” of a note and is tied to
the gate parameter. Every time gate goes from 0 to 1 (which
correlates with a new note event), the value of freq is updated.
freq always corresponds to an integer MIDI pitch number which
implies that its value is always quantized to the nearest semitone.

Pitch can be continuously updated by using the bend standard
parameter. bend is a ratio that should be multiplied to freq. E.g.:

f = nentry("freq",200,40,2000,0.01);
bend = nentry("bend",1,0,10,0.01) : si.

polySmooth(t,0.999,1);
freq = f*bend;

The state of polyphonic voices is conserved in memory until the
app is ended. Thus, the value of bend might jump from one value
to another when a new voice is activated. polySmooth() is used
here to smooth the value of bend to prevent clicks, only after the

IFC-2

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

Key Description
Inter-Keyboard Slide Enables slide between keyboards
Keyboard N - Key M - Label Specify text in a specific key and keyboard
Keyboard N - Lowest Key MIDI key number of the lowest key on a specific

keyboard
Keyboard N - Number of Keys Number of keys of a specific keyboard
Keyboard N - Orientation Orientation (left to right or right to left) of a

specific keyboard
Keyboard N - Piano Keyboard Activate piano keyboard mode (black keys)

on a specific keyboard
Keyboard N - Root Position Position of the root on a specific keyboard
Keyboard N - Scale Specify the scale of a specific keyboard
Keyboard N - Send Freq Send freq and bend from a specific keyboard
Keyboard N - Send Key X Activates the kbMkNx standard parameter
Keyboard N - Send Key Y Activates the kbMkNy standard parameter
Keyboard N - Send Key Status Activates the kbMkNstatus standard parameter
Keyboard N - Send Numbered X Activates the xN standard parameter
Keyboard N - Send Numbered Y Activates the xY standard parameter
Keyboard N - Send X Activates the x standard parameter
Keyboard N - Send Y Activates the y standard parameter
Keyboard N - Show Labels Show key labels on a specific keyboard
Keyboard N - Static Mode Fix key appearance on a specific keyboard
Number of Keyboards Number of keyboards in the interface
Max Fingers Maximum number of fingers allowed in the interface
Max Keyboard Polyphony Maximum keyboards polyphony voices
Mono Mode Mode when keyboards are monophonic
Rounding Cycles Number of cycles of pitch rounding
Rounding Mode Pitch rounding mode
Rounding Smooth Smoothness of pitch rounding
Rounding Threshold Pitch rounding threshold
Rounding Update Speed Pitch rounding update speed
Send Current Key Activates the key standard parameter
Send Current Keyboard Activates the keyboard standard parameter
Send Fingers Count Activates the kbMfingers standard parameter
Send Sensors Send sensor values

Table 3: faust2smartkeyb keys overview.

IFC-3

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

SmartKeyboard
Configurationα

DSP Parametersβ

Faust DSPγ

Faust Synth

faust2api

Template Xcode |
Android Studio Project

DSP Engine
Based on β and γ

faust2smartkeyb

Faust Effect

Compilation
Parameters

SmartKeyboard UI
Based on α

Processing Touch Events

New/Delete Voice
(gate and freq)

Sending bend,
keyboard, and key

Sending (un)numbered
x and y

Formating Synth Params

JAVA on Android / Objective-C on iOS

Sensor Data

Raw MIDIRaw OSC
Faust DSP Engine

(Generated With faust2api)
With Built-In MIDI and OSC

Support on iOS

Android Only

Audio In

Audio Out

Xcode | Android Studio App Project

Compilation

App

Mobile Device

Figure 1: Overview of faust2smartkeyb.

Figure 2: Simple SMARTKEYBOARD interface.

voice started. This suppresses any potential “sweep” that might
occur if the value of bend changes abruptly at the beginning of a
note.

2.4. Configuring Continuous Pitch Control

The Rounding Mode configuration key has a significant impact
on the behavior of freq, bend, and gate.

When Rounding Mode = 0, pitch is fully “quantized,”
and the value of bend is always 1. Additionally, a new note is
triggered every time a finger slides to a new key, impacting the
value of freq and gate.

When Rounding Mode = 1, continuous pitch control is
activated, and the value of bend is constantly updated in function
the position of the finger on the screen. New note events updating
the value of freq and gate are only triggered when fingers start
touching the screen. While this mode might be useful in some
cases, it is hard to use when playing tonal music as any new note
might be “out of tune.”

When Rounding Mode = 2, “pitch rounding” is activated
and the value of bend is rounded to match the nearest quantized
semitone when the finger is not moving on the screen. This al-
lows generated sounds to be “in tune” without preventing slides,
vibratos, etc. While the design of such a system has been previ-
ously studied, [9] we decided to implement our own algorithm for
this (see Figure 3). touchDiff is the distance on the screen
between two touch events for a specific finger. This value is
smoothed (sTouchDiff) using a unity-dc-gain one pole lowpass
filter in a separate thread running at a rate defined by configuration
key Rounding Update Speed. Rounding Smooth corre-
sponds to the pole of the lowpass filter used for smoothing (0.9 by
default). A separate thread is needed since the callback of touch

IFC-4

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

events is only called when events are received. If sTouchDiff
is greater than Rounding Threshold during a certain number
of cycles defined by Rounding Cycles, then rounding is de-
activated and the value of bend corresponds to the exact position
of the finger on the screen. If rounding is activated, the value of
bend is rounded to match the nearest pitch of the chromatic scale.

touchDiff
Rounding Thread

while(on){
sTouchDiff = smooth(touchDiff);
if(sTouchDiff >= roundingThresh &&

moveCount >= roundingCycles){
rounding = false;

}
else{
rounding = true;
moveCount = 0;

}
if(touchDiff >= 1) moveCount++;
sleep(roundingUpdateSpeed);

}

roundingUI Thread
if(rounding){
send quantized bend

}
else{
send raw bend

}

SmartKeyboard

Figure 3: SMARTKEYBOARD pitch rounding pseudo code algo-
rithm.

2.5. Using Specific Scales

A wide range of musical scales (see Table 4), all compatible with
the system described in §2.4, can be used with the SMARTKEY-
BOARD interface and configured using the Keyboard N -
Scale key (see Table 3). When other scales than the chromatic
scale are used, keys on the keyboard all have the same color.

Scale ID Scale Name
0 Chromatic
1 Major
2 Minor
3 Harmonic Minor
4 Dorian
5 South-East Asian
6 Minor Pentatonic
7 Minor Blues
8 Japanese
9 Major Pentatonic
10 Major Blues
11 Mixolydian
12 Klezmer

Table 4: SMARTKEYBOARD scales configurable with the
Keyboard N - Scale key.

Custom scales and temperaments can be implemented using
the Keyboard N - Scale configuration key. It allows us to
specify a series of intervals to be repeated along the keyboard (not
necessarily at the octave). Intervals are provided as semitones and
can have a decimal value. For example, the chromatic scale can be
implemented as:

Keyboard N - Scale = {1}

Similarly, the standard equal-tempered major scale can be speci-
fied as:

Keyboard N - Scale = {2,2,1,2,2,2,1}

A 5-limit just intoned major scale (rounded to the nearest 0.01
cents) could be:

Keyboard N - Scale =
{2.0391,1.8243,1.1173,2.0391,2.0391,

1.8243,1.1173}

Equal-tempered Bohlen-Pierce (dividing 3:1 into 13 equal inter-
vals) would be:

Keyboard N - Scale = {146.304230835802}

Alternatively, custom scales and pitch mappings can be im-
plemented directly from the FAUST code using some of the lower
level standard parameters returned by the SMARTKEYBOARD in-
terface (e.g., x, y, key, keyboard, etc.).

2.6. Handling Polyphony and Monophony

By default, the DSP engine generated by faust2api has twelve
polyphony voices. This parameter can be overridden using the -
nvoices option when executing the faust2smartkeyb com-
mand. This system works independently from the monophon-
ic/polyphonic configuration of the SMARTKEYBOARD interface.
Indeed, even when a keyboard is monophonic, a polyphonic syn-
thesizer might still be needed to leave time for the release of an
envelope generator, for example.

The Max Keyboard Polyphony key defines the maxi-
mum number of voices of polyphony of a SMARTKEYBOARD in-
terface. Polyphony is tied to fingers present on the screen, in other
words, one finger corresponds to one voice. If Max Keyboard
Polyphony = 1, then the interface becomes “monophonic.”

The monophonic behavior of the system is configured using the
Mono Mode key (see Table 5). Each mode might be useful for a
specific context. For example, Mode 3 might be great to use key-
boards in the interface as independent guitar strings, etc. More
examples of this type of use are provided in §3.

Mono
Mode Description
0 Focus stays on the same finger even if other fingers

touch the interface.
1 Focus always goes to the latest finger to touch

the interface (voice stealing). When the focused
finger leaves the interface, focus is transfered to the
closest finger.

2 Sames as 1, but the voice is terminated when the
focused finger leaves the interface.

3 Sames as 1, but focus is given to new fingers only
if their pitch is higher than the current note.

4 Sames as 2, but focus is given to new fingers only
if their pitch is lower than the current note.

Table 5: Different monophonic modes configured using the Mono
Mode key in SMARTKEYBOARD interfaces.

2.7. Other Modes

In some cases, both the monophonic and the polyphonic paradigms
are not adapted. For example, when implementing an instrument
based on a physical model, it might be necessary to use a single

IFC-5

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

voice and constantly run it. This might be the case of a virtual wind
instrument where notes are “triggered” by some of the continuous
parameters of the embouchure (see §3.4) and not by discrete events
such as the one created by a key. This type of system can be im-
plemented by setting the Max Keyboard Polyphony key to
zero. In that case, the first available voice is triggered and ran un-
til the app is killed. Adding new fingers on the screen will have
no impact on that and the gate parameter wont be sent to the
DSP engine. freq will keep being sent unless the Keyboard N
- Send Freq is set to zero. Since this parameter is keyboard

specific, some keyboards in the interface might be used for pitch
control while others might be used for other types of applications
(e.g., X/Y controller, etc.). Various examples of this type of use
are presented in §3.

It might be useful in some cases to number the standard x
and y parameters in function of the fingers present on the screen.
This can be easily accomplished by setting the Keyboard N -
Count Fingers key to one. In that case, the first finger to

touch the screen will send the x0 and y0 standard parameters to
the DSP engine, the second finger x1 and y1, and so on.

This section just gave an overview of some of the features of
faust2smartkeyb. More details about this tool can be found
in its documentation 6 as well as on the corresponding online tuto-
rials.7

3. SKILL TRANSFER AND SCREEN INTERFACE:
FAUST2SMARTKEYB APPS EXAMPLES

Implementation of skill transfer is one of the primary goals of
faust2smartkeyb. It is a crucial factor in making a success-
ful Digital Musical Instruments (DMI) as it can help accelerate its
learning and make it quickly usable by a large number of perform-
ers. A wide range of screen controllers mimicking the interface of
existing instruments can be implemented using the SMARTKEY-
BOARD interface.

This section presents a few examples where traditional acous-
tic instruments served as models and were turned into digital one
running on mobile devices using physical models from the FAUST
Physical Modeling Library [7] and faust2smartkeyb. We
demonstrate that in most cases, the implementation of such in-
struments can be approached in two different ways. The first one
consists of only specifying a single element of an instrument (e.g.,
one string of a guitar or a violin, membrane of a drum, etc.) and
then use the polyphonic features of faust2smartkeyb to im-
plement the ability of the instrument to generate several sounds
simultaneously. In the other approach, the instrument is modeled
in its whole (e.g., four strings for a violin, six strings in a guitar,
etc.) and the mapping between the interface and the model is han-
dled directly in the FAUST code.

While the goal of this section is not to be exhaustive, it should
provide enough material to demonstrate how to implement most
traditional musical instruments and more.

6https://ccrma.stanford.edu/~rmichon/
smartKeyboard/

7https://ccrma.stanford.edu/~rmichon/
faustTutorials/

3.1. Plucked Strings Instruments: the Guitar

3.1.1. Piano Keyboard Paradigm

Plucked string instruments such as the guitar, the banjo, etc. are
relatively close to struck string instruments (e.g., the piano, etc.) as
they are excited by punctual events (unlike bowed strings or wind
instruments, where energy must be constantly introduced in the
system for it to produce any sound). For this reason, controlling
these types of instrument with a “piano keyboard like” interface
makes a lot of sense as the performer expect sound to be heard
when a key is pressed. A good commercial example of such DMI
is GeoShred,8 where a new pluck is triggered every time a finger
touches a virtual string on the touch screen (this behavior might
slightly change depending on the configuration of the interface).

Listing 2 presents a faust2smartkeyb code implement-
ing an instrument working in a similar way as GeoShred. Six
parallel keyboards are used to represent six parallel strings. They
are all monophonic and implement “voice stealing” with priority
to higher pitches which means that the current note is terminated
when a new finger touches the same keyboard only if the pitch of
the note to trigger is higher than the current one (like on a physical
electric guitar string). Even though keyboards are monophonic, the
overall instrument is polyphonic and several strings can be excited
at the same time, taking advantage of the voice allocation system
of faust2smartkeyb.

Keyboards are placed one fourth apart from each other, in a
similar way as on a guitar neck, in order to facilitate skills transfer
for guitar players. Finally, slides and vibratos can be carried out
on the same string just by continuously moving the finger along
the virtual keyboard.

declare interface "SmartKeyboard{
’Number of Keyboards’:’6’,
’Max Keyboard Polyphony’:’1’,
’Mono Mode’:’3’,’Rounding Mode’:’2’,
’Keyboard 0 - Number of Keys’:’13’,
[...same for all other keyboards...]
’Keyboard 0 - Lowest Key’:’72’,
’Keyboard 1 - Lowest Key’:’67’,
’Keyboard 2 - Lowest Key’:’62’,
’Keyboard 3 - Lowest Key’:’57’,
’Keyboard 4 - Lowest Key’:’52’,
’Keyboard 5 - Lowest Key’:’47’

}";

import("stdfaust.lib");

// SMARTKEYBOARD PARAMETERS
f = hslider("freq",300,50,2000,0.01);
bend = hslider("bend",1,0,10,0.01) :

si.polySmooth(gate,0.999,1);
gain = hslider("gain",1,0,1,0.01);
s = hslider("sustain",0,0,1,1);
t = button("gate");

// MODEL PARAMETERS
gate = t+s : min(1);
freq = f*bend : max(60);
stringLength = freq : pm.f2l;
pluckPosition = 0.8;

8http://www.moforte.com/

IFC-6

https://ccrma.stanford.edu/~rmichon/smartKeyboard/
https://ccrma.stanford.edu/~rmichon/smartKeyboard/
https://ccrma.stanford.edu/~rmichon/faustTutorials/
https://ccrma.stanford.edu/~rmichon/faustTutorials/
http://www.moforte.com/

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

mute = gate : si.polySmooth(gate,0.999,1);

process =
pm.elecGuitar(stringLength,pluckPosition,

mute,gain,gate)
<: _,_;

Listing 2: faust2smartkeyb app implementing an electric
guitar with an isomorphic keyboard.

The electric guitar string physical model is implemented in the
FAUST Physical Modeling Library as elecGuitar(). The ef-
fect chain is declared in a separate file in order to use the -effect
option when using faust2smartkeyb and involves a distortion
and a reverb:

process = par(i,2,ef.cubicnl(0.8,0)) : dm.
zita_rev1;

The pitch of the virtual string is controlled by the combination
of the freq and bend standard parameters. Strings are progres-
sively muted when the finger leaves the string. In other words, they
only resonate if the associated finger remains on the screen.

3.1.2. External Plucking Paradigm

Even though the paradigm presented previously works well with
plucked string instruments, it differs from that of a real guitar
because of the lack of an independent interface for exciting the
different strings. Listing 3 presents a faust2smartkeyb app
where virtual strings are excited through a separate keyboard on
the touch-screen. This keyboard could be easily substituted by an
external controller using MIDI.

The interface contains seven keyboards: six implementing the
different strings of the guitar (and tuned the same way as on this
instrument: E, A, D, G, B, E) and one used as the interface to trig-
ger the virtual strings. Max Keyboard Polyphony is set to
zero so that a single voice is computed when the app is launched.
Indeed, unlike the previous example, the six strings of the instru-
ment are all implemented in the same process, therefore only one
voice is necessary. The freq and bend standard parameters of
the first six keyboards are retrieved and used to control the pitch of
the six independent strings.

The seventh keyboard is configured to have six keys (one for
each string). We want a specific string to be excited when a finger
touches the corresponding key. Since this system should react both
to touch and move events, both event types 1 and 4 are considered
when formating the value of kb6kstatus.

The acoustic guitar physical model used in this example is
implemented in the FAUST Physical Modeling Library [7] as
nylonGuitarModel(). Here, six models (one for each string)
are computed in parallel.

declare interface "SmartKeyboard{
’Number of Keyboards’:’7’,
’Max Keyboard Polyphony’:’0’,
’Rounding Mode’:’2’,
’Keyboard 0 - Number of Keys’:’14’,
[...same for other keyboards 1, 2, 3, 4,

and 5...]
’Keyboard 6 - Number of Keys’:’6’,
’Keyboard 0 - Lowest Key’:’52’,
’Keyboard 1 - Lowest Key’:’57’,
’Keyboard 2 - Lowest Key’:’62’,

’Keyboard 3 - Lowest Key’:’67’,
’Keyboard 4 - Lowest Key’:’71’,
’Keyboard 5 - Lowest Key’:’76’,
’Keyboard 0 - Send Keyboard Freq’:’1’,
[...same for all other keybaords...],
’Keyboard 6 - Piano Keyboard’:’0’,
’Keyboard 6 - Send Key Status’:’1’,
’Keyboard 6 - Key 0 - Label’:’S0’,
’Keyboard 6 - Key 1 - Label’:’S1’,
’Keyboard 6 - Key 2 - Label’:’S2’,
’Keyboard 6 - Key 3 - Label’:’S3’,
’Keyboard 6 - Key 4 - Label’:’S4’,
’Keyboard 6 - Key 5 - Label’:’S5’

}";

import("stdfaust.lib");

// SMARTKEYBOARD PARAMETERS
kbfreq(0) =

hslider("kb0freq",164.8,20,10000,0.01);
kbbend(0) =

hslider("kb0bend",1,0,10,0.01);
[...same for other keyboards until kb5...]
kb6kstatus(0) =

hslider("kb6k0status",0,0,1,1)
<: ==(1) | ==(4) : int;

kb6kstatus(1) =
hslider("kb6k1status",0,0,1,1)
<: ==(1) | ==(4) : int;

[...same for all other keys of kb6...]

// MODEL PARAMETERS
sl(i) = kbfreq(i)*kbbend(i) :

pm.f2l : si.smoo;
pluckPosition = hslider("pluckPosition

[acc: 1 0 -10 0 10]",0.5,0,1,0.01) :
si.smoo;

// ASSEMBLING MODELS
nStrings = 6; // number of strings
guitar = par(i,nStrings,kb6kstatus(i) : ba.

impulsify : pm .nylonGuitarModel(sl(i),
pluckPosition)) :> _;

process = guitar <: _,_;

Listing 3: faust2smartkeyb app implementing an acoustic
guitar with an independent plucking interface.

3.2. Bowed Strings Instruments: the Violin

Unlike plucked string instruments (see §3.1), bowed string instru-
ments must be constantly excited to generate sound. Thus, param-
eters linked to bowing (i.e., bow pressure, bow velocity, etc.) must
be continuously controlled. The faust2smartkeyb code pre-
sented in Listing 4 is a violin app where each string is represented
by one keyboard in the interface (in a similar way than the guitar
presented in §3.1). This interface is common to all strings that are
activated when they are touched on the screen.

The SMARTKEYBOARD configuration declares 5 keyboards
(4 strings and one control surface for bowing). “String keyboards”

IFC-7

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

Figure 4: Screen-shot of the interface of the app generated from
the code presented in Listing 3.

are tuned like on a violin (G, D, A, E) and are configured to be
monophonic and implement “pitch stealing” when a higher pitch
is selected (see §3.1). Bow velocity is computed by measuring the
displacement of the finger touching the 5th keyboard (bowVel).
Bow pressure just corresponds to the y position of the finger on
this keyboard. Strings are activated when at least one finger is
touching the corresponding keyboard (as(i)).

The app doesn’t take advantage of the polyphony support of
faust2smartkeyb and a single voice is constantly ran af-
ter the app is launched (Max Keyboard Polyphony = 0
). Four virtual strings based on a simple violin string model
(violinModel()) implemented in the FAUST Physical Mod-
eling Library are declared in parallel and activated in function of
events happening on the screen.

declare interface "SmartKeyboard{
’Number of Keyboards’:’5’,
’Max Keyboard Polyphony’:’0’,
’Rounding Mode’:’2’,
’Send Fingers Count’:’1’,
’Keyboard 0 - Number of Keys’:’19’,
[...same for next 3 keyboards...]
’Keyboard 4 - Number of Keys’:’1’,
’Keyboard 0 - Lowest Key’:’55’,
’Keyboard 1 - Lowest Key’:’62’,
’Keyboard 2 - Lowest Key’:’69’,
’Keyboard 3 - Lowest Key’:’76’,
’Keyboard 0 - Send Keyboard Freq’:’1’,
[...same for next 3 keyboards...]
’Keyboard 4 - Send Freq’:’0’,
’Keyboard 4 - Send Key X’:’1’,
’Keyboard 4 - Send Key Y’:’1’,
’Keyboard 4 - Static Mode’:’1’,
’Keyboard 4 - Key 0 - Label’:’Bow’

}";

import("stdfaust.lib");

// SMARTKEYBOARD PARAMETERS
kbfreq(0) =

hslider("kb0freq",220,20,10000,0.01);
kbbend(0) =

hslider("kb0bend",1,0,10,0.01);
[...same for the 3 next keyboards...]
kb4k0x =

hslider("kb4k0x",0,0,1,1) : si.smoo;
kb4k0y =

hslider("kb4k0y",0,0,1,1) : si.smoo;
kbfingers(0) =

hslider("kb0fingers",0,0,10,1) : int;
[...same for the 3 next keyboards...]

// MODEL PARAMETERS
// strings lengths
sl(i) = kbfreq(i)*kbbend(i) :

pm.f2l : si.smoo;
// activates string
as(i) = kbfingers(i)>0;
bowPress = kb4k0y;
// finger displacement on screen
bowVel = kb4k0x-kb4k0x’ : abs : *(8000) :

min(1) : si.smoo;
bowPos = 0.7;

// ASSEMBLING MODELS
// essentially 4 parallel violin strings
model = par(i,4,pm.violinModel(sl(i),

bowPress,bowVel*as(i),bowPos))
:> _;

process = model <: _,_;

Listing 4: faust2smartkeyb app implementing a violin with
an independent interface for bowing.

Figure 5: Screen-shot of the interface of the app generated from
the code presented in Listing 4.

Alternatively, the bowing interface could be removed and the
bow velocity could be calculated based on the displacement on the
y axis of a finger on a keyboard, allowing one to excite the string
and control its pitch with a single finger. However, concentrating
so many parameters on a single gesture tends to limit the affor-

IFC-8

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

dances of the instrument. The code presented in Listing 4 could be
easily modified to implement this behavior.

3.3. Percussion Instruments: Polyphonic Keyboard and Inde-
pendent Instruments Paradigms

Just like plucked string instruments (see §3.1), percussion instru-
ments can be implemented using faust2smartkeyb either as
polyphonic instruments or as a constantly running synthesizer im-
plementing multiple instruments in parallel. In the first case (see
the djembes example below), a new voice is allocated every time
the instrument is stroke. A voice might implement several models
and choose one of them in function of the pad/key being touched.
Another option is to use a single scalable model whose proper-
ties will change every time a voice is started. In the second case
(see the bells example below), a single voice implementing several
models in parallel is initiated when the app is launched and models
are excited in function of the pad/key touched in the interface. The
following subsections provide examples of these two paradigms.

3.3.1. Set of Djembes: Example of Polyphonic Keyboard
Paradigm for Percussion Instruments

The code presented in Listing 5 implements a SMARTKEYBOARD
app where three pads can be used to play three djembes of different
sizes. A single model whose fundamental frequency is adjusted in
function of the virtual pad being stroke is used. This app takes
advantage of the polyphony system of faust2smartkeyb and
a new voice is instantiated every time a new strike happens on the
touchscreen.

The interface is made out of two polyphonic keyboards (one
with two keys and one with one key). The (x, y) position of the
finger on the keys/pads are retrieved and used to compute the exci-
tation position (exPos) on the model. The fundamental frequency
(rootFreq) of the model is selected in function of the pad being
touched. The djembe physical model used in this program is im-
plemented in the FAUST Physical Modeling Library.

declare interface "SmartKeyboard{
’Number of Keyboards’:’2’,
’Keyboard 0 - Number of Keys’:’2’,
’Keyboard 1 - Number of Keys’:’1’,
’Keyboard 0 - Static Mode’:’1’,
’Keyboard 1 - Static Mode’:’1’,
’Keyboard 0 - Send X’:’1’,
’Keyboard 0 - Send Y’:’1’,
’Keyboard 1 - Send X’:’1’,
’Keyboard 1 - Send Y’:’1’,
’Keyboard 0 - Piano Keyboard’:’0’,
’Keyboard 1 - Piano Keyboard’:’0’,
’Keyboard 0 - Key 0 - Label’:’High’,
’Keyboard 0 - Key 1 - Label’:’Mid’,
’Keyboard 1 - Key 0 - Label’:’Low’

}";

import("stdfaust.lib");

// SMARTKEYBOARD PARAMETERS
gate = button("gate");
x = hslider("x",1,0,1,0.001);
y = hslider("y",1,0,1,0.001);
keyboard =

hslider("keyboard",0,0,1,1) : int;
key = hslider("key",0,0,1,1) : int;

djembeInstrument =
pm.djembe(rootFreq,exPos,strikeSharpness,

gain,gate)
with{

bFreq = 60; // freq of the lowest djembe
padID = 2-(keyboard*2+key);
rootFreq = bFreq*(padID+1);
exPos = min((x*2-1 : abs),(y*2-1 : abs));
strikeSharpness = 0.5;
gain = 2;

};

process = djembeInstrument <: _,_;

Listing 5: faust2smartkeyb app implementing a set of
djembes.

A similar approach could be used to map keys/pads to com-
pletely different models by declaring them in the same FAUST code
(i.e., voice in this case) and activating them in function the key be-
ing touched.

3.3.2. Set of Bells: Examples of Independent Instrument
Paradigm for Percussion Instruments

The code presented in Listing 6 implements a SMARTKEYBOARD
app where four different bells are associated to four different pads
on the touchscreen. The strike position on each pad is used to
control the excitation position on the corresponding virtual bell.

The SMARTKEYBOARD interface is made out of two key-
boards of two keys. A single voice is instantiated whenever the app
is launched (Max Keyboard Polyphony = 0). Four bell
physical models from the FAUST Physical Modeling Library are
ran in parallel. The status of each key in the interface is retrieved
and used to trigger the excitation for each bell independently.

declare interface "SmartKeyboard{
’Number of Keyboards’:’2’,
’Max Keyboard Polyphony’:’0’,
’Keyboard 0 - Number of Keys’:’2’,
’Keyboard 1 - Number of Keys’:’2’,
’Keyboard 0 - Send Freq’:’0’,
’Keyboard 1 - Send Freq’:’0’,
’Keyboard 0 - Piano Keyboard’:’0’,
’Keyboard 1 - Piano Keyboard’:’0’,
’Keyboard 0 - Send Key Status’:’1’,
’Keyboard 1 - Send Key Status’:’1’,
’Keyboard 0 - Send X’:’1’,
’Keyboard 0 - Send Y’:’1’,
’Keyboard 1 - Send X’:’1’,
’Keyboard 1 - Send Y’:’1’,
’Keyboard 0 - Key 0 - Label’:’English’,
’Keyboard 0 - Key 1 - Label’:’French’,
’Keyboard 1 - Key 0 - Label’:’German’,
’Keyboard 1 - Key 1 - Label’:’Russian’

}";

import("stdfaust.lib");

// SMARTKEYBOARD PARAMETERS

IFC-9

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

kb0k0status = hslider(
"kb0k0status",0,0,1,1) : min(1) : int;

kb0k1status = hslider(
"kb0k1status",0,0,1,1) : min(1) : int;

kb1k0status = hslider(
"kb1k0status",0,0,1,1) : min(1) : int;

kb1k1status = hslider(
"kb1k1status",0,0,1,1) : min(1) : int;

x = hslider("x",1,0,1,0.001);
y = hslider("y",1,0,1,0.001);

// MODEL PARAMETERS
strikeCutoff = 6500; strikeSharpness = 0.5;
strikeGain = 1; nModes = 10;
t60 = 30; // resonance duration
nExPos = 7; // number of strike positions
exPos = min((x*2-1 : abs),(y*2-1 : abs))*
(nExPos-1) : int;

// ASSEMBLING MODELS
bells =

(kb0k0status : pm.strikeModel(10,
strikeCutoff,strikeSharpness,
strikeGain) : pm.englishBellModel(
nModes,exPos,t60,1,3)) +

(kb0k1status : pm.strikeModel(10,
strikeCutoff,strikeSharpness,
strikeGain) : pm.frenchBellModel(
nModes,exPos,t60,1,3)) +

(kb1k0status : pm.strikeModel(10,
strikeCutoff,strikeSharpness,
strikeGain) : pm.germanBellModel(
nModes,exPos,t60,1,2.5)) +

(kb1k1status : pm.strikeModel(10,
strikeCutoff,strikeSharpness,
strikeGain) : pm.russianBellModel(
nModes,exPos,t60,1,3))

:> *(0.2);

process = bells <: _,_;

Listing 6: faust2smartkeyb app implementing a set of bells.

This approach is often better suited for physical-model-based
percussion instruments as it is much closer to how acoustic mu-
sical instrument work. Indeed, unlike the djembe examples, all
bell models are constantly ran here and no concept of polyphony
is used.

3.4. Wind Instruments: Key Combinations and Continuous
Control

As for instruments from the previous categories treated in
this section, wind instruments can be implemented with
faust2smartkeyb using either the “polyphonic keyboard” or
the “full model” paradigm. This second case is particularly rel-
evant for wind instruments that are often monophonic and where
pitch is usually selected by combining several keys (unlike a pi-
ano keyboard where one key corresponds to one pitch). The
faust2smartkeyb code presented in Listing 7 implements a
clarinet app which is meant to be ran on a small screen device
(i.e., a smart-phone). The device is expected to be held with two

hands with thumbs underneath and all other fingers on the screen.
The instrument is played by blowing onto the built-in microphone
which is used to control breath pressure. Different buttons on the
screen interface represent the keys of the instrument. The y axis
of the built-in accelerometer controls the “bell opening” parameter
which acts as a mute on the instrument.

The screen interface is made out of two keyboards of four and
five keys, respectively. The highest key on both keyboards can be
used to switch between octaves (see Figure 6). The key on the
first keyboard switches octaves up (octaveShiftUp) and the
key on the second keyboard octaves down (octaveShiftDown
). These keys are meant to be touched by the “baby finger” of
both hands. Other keys reproduce a simplified version of clarinet
fingerings presented in Figure 6. This mapping was designed to
leverage existing skills while adapting them to what can be im-
plemented on a touchscreen. This type of behavior is created
by retrieving the status of all keys in the interface by using the
kbMkNstatus standard parameter and comparing them to ex-
pected fingers combinations. The length of the tube of the clar-
inet physical model is modulated in function of all these elements.
The model is part of the FAUST Physical Modeling Library. The
pressure parameter is computed by using an envelope follower
(an.amp_follower_ud()) on the signal of the built-in micro-
phone of the device.

declare interface "SmartKeyboard{
’Number of Keyboards’:’2’,
’Max Keyboard Polyphony’:’0’,
’Keyboard 0 - Number of Keys’:’4’,
’Keyboard 1 - Number of Keys’:’5’,
’Keyboard 0 - Send Freq’:’0’,
’Keyboard 1 - Send Freq’:’0’,
’Keyboard 0 - Piano Keyboard’:’0’,
’Keyboard 1 - Piano Keyboard’:’0’,
’Keyboard 0 - Send Key Status’:’1’,
’Keyboard 1 - Send Key Status’:’1’,
’Keyboard 0 - Key 3 - Label’:’O+’,
’Keyboard 1 - Key 4 - Label’:’O-’

}";

import("stdfaust.lib");

// SMARTKEYBOARD PARAMETERS
kb0k0status = hslider(

"kb0k0status",0,0,1,1) : min(1) : int;
kb0k1status = hslider(

"kb0k1status",0,0,1,1) : min(1) : int;
[...same for all other keys...]

// MODEL PARAMETERS
bellOpening = hslider(

"bellOpening[acc: 1 1 -10 0 10]",0.5,0.3,
0.7,0.01) : si.smoo;

basePitch = 73; // C#4
// calculate pitch shift in function of

keys combination
pitchShift =

((kb0k0status == 0) & (kb0k1status == 1)
& (kb0k2status == 0) &

(kb1k0status == 0) & (kb1k1status == 0)
& (kb1k2status == 0) &

(kb1k3status == 0))*(-1) + // C

IFC-10

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

C D E F G A B

C# Eb F# G# Bb

C
Figure 6: Fingers mapping of the interface of the app generated from the code presented in Listing 7.

[...same for other notes of the chromatic
scale...]

((kb0k0status == 1) & (kb0k1status == 1)
& (kb0k2status == 1) &

(kb1k0status == 1) & (kb1k1status == 1)
& (kb1k2status == 1) &

(kb1k3status == 1))*(-13); // C
octaveShiftUp =
+(kb0k3status : ba.impulsify)~_;

octaveShiftDown =
+(kb1k4status : ba.impulsify)~_;

octaveShift =
(octaveShiftUp-octaveShiftDown)*(12);

tubeLength =
basePitch+pitchShift+octaveShift :
ba.midikey2hz : pm.f2l : si.smoo;

reedStiffness = 0.5;

model(pressure) =
pm.clarinetModel(tubeLength,pressure,

reedStiffness,bellOpening);

process = an.amp_follower_ud(0.02,0.02)*0.7
: model <: _,_;

Listing 7: faust2smartkeyb app implementing a clarinet.

4. CONCLUSIONS

faust2smartkeyb has been tested and evaluated in the frame-
work of several workshops[10, 11, 12] that significantly con-
tributed to its improvement. However, it is a large project and
there probably remains bugs to be fixed. Additionally, despite the
fact that we haven’t found a touchscreen interface for live music
performance that can’t be implemented with this system yet, many
cases probably haven’t been tested (or thought of) and there defi-
nitely exists rooms for improvements.

Thanks to new technologies and standards such as WebAssem-
bly and the Audio Worklets, we believe that the future of mobile
device apps is in the web. GRAME’s research team has deployed
a tremendous amount of effort to adapt FAUST to these new web

standards for audio. In this context, we would like to port our
SMARTKEYBOARD interface to JavaScript.

Mastering a musical instrument is a time consuming process.
While skill transfer can help reduce its duration, we do not claim
that the instruments presented in this paper are faster to learn than
any other type of instrument. Virtuosity can be afforded by the in-
strument, but it still depends on the musicianship of the performer.

5. REFERENCES

[1] Peter Brinkmann, Peter Kirn, Richard Lawler, Chris Mc-
Cormick, Martin Roth, and Hans-Christoph Steiner, “Em-
bedding PureData with libpd,” in Proceedings of the Pure
Data Convention, Weinmar, Germany, 2011.

[2] Victor Lazzarini, Steven Yi, Joseph Timoney, Damian Keller,
and Marco Pimenta, “The mobile Csound platform,” in Pro-
ceedings of the International Conference on Computer Music
(ICMC-12), Ljubljana, Slovenia, September 2012.

[3] Romain Michon, “faust2android: a Faust architecture for
Android,” in Proceedings of the 16th International Confer-
ence on Digital Audio Effects (DAFx-13), Maynooth, Ireland,
September 2013.

[4] Yann Orlarey, Stéphane Letz, and Dominique Fober, New
Computational Paradigms for Computer Music, chapter
“Faust: an Efficient Functional Approach to DSP Program-
ming”, Delatour, Paris, France, 2009.

[5] Romain Michon, Julius Smith, Chris Chafe, Stéphane Letz,
and Yann Orlarey, “faust2api: a comprehensive api gener-
ator for android and ios,” in Proceedings of the Linux Au-
dio Conference (LAC-17), Saint-Etienne, France, May 2017,
Submitted for review.

[6] Romain Michon, Julius Orion Smith, and Yann Orlarey,
“MobileFaust: a set of tools to make musical mobile applica-
tions with the Faust programming language,” in Proceedings
of the Linux Audio Conference (LAC-15), Mainz, Germany,
April 2015.

[7] Romain Michon, Julius O. Smith, Chris Chafe, Ge Wang,
and Matt Wright, “The faust physical modeling library: a
modular playground for the digital luthier,” in Proceedings
of the 1st International Faust Conference (IFC-18), Mainz
(Germany), 2018, Submitted for review.

IFC-11

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

[8] GRAME – Centre National de Création Musicale, Lyon,
France, FAUST Quick Reference, June 2017.

[9] Olivier Perrotin and Christophe d’Alessandro, “Adaptive
mapping for improved pitch accuracy on touch user inter-
faces,” in Proceedings of the International Conference on
New Interfaces for Musical Expression, Daejeon, South Ko-
rea, May 2013.

[10] “CCRMA 2016 composed instrument workshop:
Intersections of 3D printing and digital audio
for mobile platforms,” Web-Page, 2016, URL:
https://ccrma.stanford.edu/~rmichon/
composedInstrumentWorkshop/.

[11] “Aalborg university 2017 augmented smartphone workshop,”
Web-Page, 2017, https://ccrma.stanford.edu/
~rmichon/copAugSmartWorkshop/.

[12] “2017 ccrma mobile synth workshop series,” Web-Page,
2017, https://ccrma.stanford.edu/~rmichon/
mobileSynth.

IFC-12

https://ccrma.stanford.edu/~rmichon/composedInstrumentWorkshop/
https://ccrma.stanford.edu/~rmichon/composedInstrumentWorkshop/
https://ccrma.stanford.edu/~rmichon/copAugSmartWorkshop/
https://ccrma.stanford.edu/~rmichon/copAugSmartWorkshop/
https://ccrma.stanford.edu/~rmichon/mobileSynth
https://ccrma.stanford.edu/~rmichon/mobileSynth

	1 Introduction
	2 faust2smartkeyb
	2.1 Apps Generation and General Implementation
	2.2 Architecture of a Simple |faust2smartkeyb| Code
	2.3 Preparing a Faust Code for Continuous Pitch Control
	2.4 Configuring Continuous Pitch Control
	2.5 Using Specific Scales
	2.6 Handling Polyphony and Monophony
	2.7 Other Modes

	3 Skill Transfer and Screen Interface: Faust2smartkeyb Apps Examples
	3.1 Plucked Strings Instruments: the Guitar
	3.1.1 Piano Keyboard Paradigm
	3.1.2 External Plucking Paradigm

	3.2 Bowed Strings Instruments: the Violin
	3.3 Percussion Instruments: Polyphonic Keyboard and Independent Instruments Paradigms
	3.3.1 Set of Djembes: Example of Polyphonic Keyboard Paradigm for Percussion Instruments
	3.3.2 Set of Bells: Examples of Independent Instrument Paradigm for Percussion Instruments

	3.4 Wind Instruments: Key Combinations and Continuous Control

	4 Conclusions
	5 References

