
Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

AN OVERVIEW OF THE FAUST DEVELOPER ECOSYSTEM

Stéphane Letz

GRAME
Lyon, France

letz@grame.fr

Yann Orlarey

GRAME
Lyon, France

orlarey@grame.fr

Dominique Fober

GRAME
Lyon, France

fober@grame.fr

ABSTRACT

The FAUST language has been designed to provide developers
an alternative to C/C++ code, to easily develop and deploy DSP
algorithms, effects, instruments etc. The ecosystem is composed
of the language and its compiler, as well as different components
that help test, benchmark and optimize, and run the resulting code
on a large variety of platforms.

In this paper we present various architectures files, optimiza-
tion and testing tools, that have been developed over the years as
part of the FAUST ecosystem, in order to expand the use of the
compiler on various targets, and help developers optimize their
DSP code. Some of them were publicly announced and can help
when deploying DSPs, some are more experimental to be tested
by more adventurous developers.

1. INTRODUCTION

The FAUST compiler was initially developed and distributed as
a standalone program, producing a C++ class from a given DSP
source, to be wrapped by architecture files [1], containing the au-
dio driver and controller part, and deployed as ready to use stan-
dalone applications or plug-ins, using so-called faust2xx scripts.
As more deployment targets were added, new architecture files and
scripts were progressively written.

At the same time, the compiler was reworked to be usable as
an embeddable library called libfaust, associated with an LLVM IR
backend. LLVM is a compiler infrastructure project, as a collec-
tion of modular and reusable compiler and toolchain technologies,
that can be used to develop compiler front ends and back ends.
Linked with components of the LLVM compiler toolchain, in par-
ticular its JIT LLVM IR to executable code module, the libfaust
library allows to deploy a complete dynamic compilation chain,
from DSP source to executable code, in applications or plug-ins.

Backends for additional target languages (Java, asm.js, Web
Assembly, Interpreter) have been developed. The interpreter back-
end gives an alternate way to deploy the dynamic compilation
chain, which can be useful in some very specific situations. The
Web as a universal platform has been more recently targeted with
the WebAssembly backend and associated JavaScript wrapper files
[2]. Finally tools to help deploying the compiled code have been
written.

The paper presents the most useful tools, and is divided in
four parts: section 2 explains how the dynamic compilation chain
works, section 3 demonstrates several optimisation tools, section
4 details new developments done in the libfaustremote library, and
section 5 presents more experimental developments.

2. DYNAMIC COMPILATION

Dynamic compilation allows more flexible deployment of the com-
pilation chain, as already demonstrated in the FaustLive applica-
tion [3] or the faustgen~ Max/MSP external. To further extend the
same idea, new backends besides the LLVM one have been devel-
oped.

2.1. The interpreter backend in libfaust

The interpreter backend has been first written to allow dynamical
compilation on iOS, where Apple does not allow LLVM based JIT
compilation to be deployed, but can also be used to develop testing
tools (see section 3.4). It has been defined as a typed language and
a virtual machine to execute it.

2.1.1. Interpreter internals

The FAUST compiler is organized in successive stages, from the
DSP block diagram to signals, and finally to the FIR (FAUST Im-
perative Representation) which is then translated to several tar-
get languages. The FIR language describes the computation per-
formed on the samples in a generic manner. It contains primitives
to read and write scalar variables and arrays, do arithmetic oper-
ations, and defines the necessary control structures (for and while
loops, if or select statements for branching etc.).

The FIR language is simple enough to be easily translated in
the typed bytecode for an interpreter, which contains the following
kind of instructions:

• memory load/store operations using indexes as offset in global
real (float or double) and integer heaps, to be used for scalar
or array access

• mathematical operations taking their arguments from the
stack or from the heap

• control operations (select, if and for loop).

The bytecode is generated by a FIR to bytecode compilation
pass. The virtual machine then executes the bytecode on a stack
based machine, with a real typed stack and an integer typed stack.
Heap memories for reals and integers contain the DSP state with
delay lines, waveforms, control parameters, to be initialized at init
time (for instance with default controller values). Typed (as integer
or real) intermediate results are pushed on the corresponding stack.
Cast operations typically operate on a value from one type read on
the corresponding stack, then casted and pushed on the other one.

The virtual machine can execute the simple version of the
bytecode directly produced by the FIR to bytecode pass, which as-
sumes for instance that arguments to mathematical operations are
always to be taken from the stack. Bytecode optimization passes
can be used to group successive operations, and generate faster

IFC-1

http://faust.grame.fr
mailto:letz@grame.fr
http://faust.grame.fr
mailto:orlarey@grame.fr
http://faust.grame.fr
mailto:fober@grame.fr

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

ones, like variants of mathematical operations that directly take
their arguments at a given heap location, instead of the stack.

2.1.2. The interpreter API

The interpreter backend API is similar to the LLVM backend API
[4]. The compilation step is done through the
createInterpreterDSPFactory function. Given a FAUST
source code (as a file or a string), the compilation chain (FAUST +
interpreter backend) generates the “prototype” of the class, as an
interpreter_dsp_factory pointer. This factory actually
contains the compiled bytecode for the given DSP.

Next, the createDSPInstancemethod of the factory class,
corresponding to the new className of C++, instantiates an
interpreter_dsp pointer, to be used as any regular FAUST
compiled DSP object, run and controlled through its interface. The
instance contains the interpreter virtual machine loaded with the
compiled bytecode, to be executed for each method.

After the DSP factory has been compiled, the application or
plugin may want to save/restore it in order to save FAUST to inter-
preter bytecode compilation at next use. To get the internal factory
bytecode and save it, two functions are available:

• writeInterpreterDSPFactoryToMachine allows
to get the interpreter bytecode as a string

• writeInterpreterDSPFactoryToMachineFile al-
lows to save the interpreter bytecode in a file

To re-create a DSP factory from a previously saved code, two
functions are available:

• readInterpreterDSPFactoryFromMachine allows
to create a DSP factory from a string containing the inter-
preter bytecode

• readInterpreterDSPFactoryFromMachineFile
allows to create a DSP factory from a file containing the

interpreter bytecode

The complete API is available and documented in the installed
faust/dsp/interpreter-dsp.h header 1. Note that only the scalar com-
pilation mode is supported.

2.1.3. Performance

The generated code is obviously much slower than LLVM gener-
ated native code. Measurements on various DSPs examples have
been done, and the code is between 3 and more than 10 times
slower than the LLVM native code.

2.1.4. Use cases

The typical use-case is an extension of the FaustLive application,
where DSP source is edited and tested in FaustLive. The DSP
source is sent to an iOS based mobile machine using the HTTP
protocol 2, dynamically compiled and executed, possibly at a lower
sample-rate to compensate for the higher DSP CPU usage. An-
other possibility is to cross-compile the DSP source to the inter-
preter bytecode on the FaustLive hosting machine, to be sent and

1Note that the whole faust/xxx/yyy header hierarchy will be installed in
the system after the standard make install step

2Using a libmicrohttpd (https://www.gnu.org/software/
libmicrohttpd/) based solution for instance.

executed on the iOS one, where the virtual machine part only has
to be deployed. When finished, the application can be compiled to
fast and native code using the standard faust2ios script.

Another idea that needs further exploration: since the virtual
machine is under complete control, instrumenting the DSP code
(adding signal sensors to look at internal signals at specific loca-
tions in the generated code) could possibly be done.

2.2. Using libfaust and the WebAssembly backend

WebAssembly 3 is a new Web standard that defines a binary for-
mat and a corresponding assembly-like text format for executable
code in Web pages. It allows to execute code nearly as fast as
native code. It is envisioned to complement JavaScript to speed
up performance-critical parts of Web applications and later on to
enable web development in other languages than JavaScript.

The WebAssembly backend allows to generate textual or bi-
nary code, to be usually deployed on the Web and executed in
browsers. Standalone WebAssembly supporting runtimes start to
appear, promising to help deploying dynamically generated code
in various contexts, outside of the Web. So the wasm format will
presumably become a cross-platform format, quite interesting to
use in the audio domain [5]. Here are three solutions, two of them
can already be used, the last one is still in progress and will need
additional glue code to be written.

2.2.1. Using Node.js

Node.js 4 is an open-source, cross-platform JavaScript run-time
environment, built on Chrome’s V8 JavaScript engine, typically
for executing JavaScript code on the server-side. Since recent ver-
sions now support WebAssembly, FAUST generated wasm mod-
ules can now be loaded, compiled using the
WebAssembly.compile function, instantiated using the func-
tion WebAssembly.Instance, and finally driven by JavaScript
code.

The architecture/webaudio/wasm-standalone-node-wrapper.js
loader file example can be used. It implements a wrapper of the
wasm module to expose the DSP API as JavaScript functions.

2.2.2. Using the WAVM runtime

The WAVM project, developed in C++, compiles WebAssembly
to native code using the LLVM technology 5. Compared to native
code, performances are already good, and can possibly be further
improved by adapting the LLVM JIT generated code to the speci-
ficities of audio code [5].

A wasm_dsp class, which is a subclass of the base dsp class
has been developed. It contains the glue code to load the wasm
module, compile it with the WAVM machinery, get pointers to the
JIT compiled functions, and make them accessible as methods of
the wasm_dsp class. A newly allocated wasm_dsp object can
then be used with audio drivers or UI classes as usual.

The FAUST related code has been developed on a WAVM fork
here: https://github.com/sletz/WAVM.

3https://webassembly.org
4https://nodejs.org
5https://github.com/AndrewScheidecker/WAVM

IFC-2

https://www.gnu.org/software/libmicrohttpd/
https://www.gnu.org/software/libmicrohttpd/
https://github.com/sletz/WAVM
https://webassembly.org
https://nodejs.org
https://github.com/AndrewScheidecker/WAVM

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

2.2.3. Using cretonne and wasmstandalone

Cretonne 6 is a Rust written low-level retargetable code generator,
designed to be a code generator for WebAssembly. It translates a
target-independent intermediate language into executable machine
code. Associated with the wasmstandalone project 7, it will allow
to deploy FAUST DSP code compiled to wasm 8.

2.3. Testing libfaust and LLVM/interpreter backends

The libfaust API is published and documented in the faust/dsp/llvm-
dsp.h public header file for its LLVM backend, and
faust/dsp/interpreter-dsp.h public header file for its interpreter back-
end.

The dynamic-jack-gtk tool has been developed to test them.
It uses the dynamic compilation chain, compiles a FAUST DSP
source, and runs it with the LLVM or interpreter backend. Com-
mand line parameters allow to choose between LLVM or inter-
preter backends, activate polyphonic and MIDI modes, OSC and
httpd controllers:

• -llvm|interp to choose either LLVM or interpreter back-
end

• -nvoices N to start the DSP in polyphonic mode with N
voices

• -midi to activate MIDI control

• -osc to activate OSC control

• -httpd to activate HTTPD control

The dynamic-jack-gtk tool is located in tools/benchmark and
has to be compiled separately. After having prepared the needed
dependancies (libfaust with embedded LLVM and Interpreter back-
ends), use make & sudo make install to compile and in-
stall it.

3. OPTIMISATION TOOLS

The FAUST compiler has a lot of different compilation parame-
ters to explore. Code can be generated in the so-called scalar
mode (one big loop), or as a graph of smaller loops connected with
buffers 9 and more amenable to auto-vectorization or even paral-
lelisation. Size of internal buffers in vector mode and handling of
delays lines can be changed. The typical parameters to explore
are:

• -vec generate easier to vectorize code with the associated
-lv [0:fastest (default), 1:simple]

• -g group single-threaded sequential tasks together if -omp
or -sch is used

• -fun separate tasks code as separated functions (in -vec,
-sch, or -omp mode)

• -mcd threshold between copy and ring buffer implementa-
tion (default 16 samples), used for delay lines

6https://github.com/stoklund/cretonne
7https://github.com/sunfishcode/wasmstandalone
8At the time of writing, the code is not yet ready to be tested.
9Using with vector (-vec) and parallel (-omp, -sch) code generation

modes

Discovering the best combination of parameters to get maxi-
mum CPU throughput for a given DSP program can be automated.
Two measure_dsp and dsp_optimizer classes are available
for developers to measure DSP CPU use directly in their code. Us-
ing them, two faustbench and faustbench-llvm tools have been de-
veloped. They allow to discover the best FAUST compiler parame-
ters, to be used later on with faust2xx scripts, faustgen~ Max/MSP
external or FaustLive.

3.1. The measure_dsp and dsp_optimizer DSP classes

The measure_dsp class defined in the faust/dsp/dsp-bench.h file
allows to decorate a given DSP object and measure its compute
method CPU consumption. Results are given in Megabytes/sec-
onds (higher is better). Here is a C++ code example of its use:

void bench (dsp∗ dsp , c o n s t s t r i n g& name)
{

/ / I n i t t h e DSP
dsp−> i n i t (4 8 0 0 0) ;
/ / Wraps i t w i t h a ’ measure_dsp ’ d e c o r a t o r
measure_dsp mes (dsp , 1024 , 5) ;
/ / Measure t h e CPU use
mes . measure () ;
/ / P r i n t t h e s t a t s
c o u t << mes . g e t S t a t s () << e n d l ;

}

Defined in the faust/dsp/dsp-optimizer.h file, the
dsp_optimizer class uses the libfaust library and its LLVM
backend to dynamically compile DSP objects produced with dif-
ferent FAUST compiler options, and then measure their DSP CPU.
Here is a C++ code example of its use:

void dynamic_bench (c o n s t s t r i n g& d s p _ s o u r c e)
{

/ / I n i t t h e DSP o p t i m i z e r w i t h t h e d s p _ s o u r c e
d s p _ o p t i m i z e r o p t i m i z e r (d sp_sou rc e , " / u s r /

l o c a l / s h a r e / f a u s t " , " " , 1024) ;
/ / D i s c o v e r t h e b e s t s e t o f p a r a m e t e r s
p a i r <double , v e c t o r < s t r i n g >> r e s = o p t i m i z e r .

f i n d O p t i m i z e d P a r a m e t e r s () ;
}

Starting from this C++ code, several tools have been devel-
oped.

3.2. The faustbench tool

The faustbench tool uses the C++ backend to generate a set of C++
files produced with different FAUST compiler options. All files are
then compiled to a unique binary that will measure DSP CPU of all
versions of the compiled DSP, and find the best set of parameters.

When used on a standard machine, the tool is supposed to be
launched in a terminal. To facilitate testing on the iOS mobile
platform, it can also be used to generate an Xcode project, ready to
be launched and tested, with results simply printed on the console.

3.3. The faustbench-llvm tool

The faustbench-llvm tool uses the libfaust library and its LLVM
backend to dynamically compile DSP objects produced with dif-
ferent FAUST compiler options, and then measure their DSP CPU.
Since the dynamic compilation chain is used, additional compiler
options can be added, beside the ones that will be automatically
explored by the tool.

IFC-3

https://github.com/stoklund/cretonne
https://github.com/sunfishcode/wasmstandalone

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

3.4. The interp-tracer tool

The interpreter backend allows to execute the DSP code on a vir-
tual machine, that can be easily instrumented to test various run-
time code characteristics.

The interp-tracer tool runs and instruments the compiled pro-
gram using the interpreter backend. Various statistics on floating-
point and integer numbers computation are collected and displayed
while running and/or when closing the application:

• FP_SUBNORMAL indicates that the value is subnormal

• FP_INFINITE indicates that the value is not representable
by the underlying type (positive or negative infinity)

• FP_NAN indicates that the value is not-a-number (NaN)

• INTEGER_OVERFLOW indicates a overflow in integer com-
putation

• DIV_BY_ZERO indicates a division by zero

Some of them can indicate a real issue in the generated code
(still not detected at compile time by the FAUST compiler), some
like the INTEGER_OVERFLOW are expected behaviors for some
algorithms like noise generation for instance. Several modes can
be used:

i n t e r p −t r a c e − t r a c e <1−5> −c o n t r o l [a d d i t i o n a l
F a u s t o p t i o n s (− f t z xx)] foo . dsp

Mode 4 and 5 allow to display the stack trace of the running
code when FP_INFINITE, FP_NAN or INTEGER_OVERFLOW
values are produced. The -control mode allows to check control
parameters, by explicitly setting their min and max values, to pos-
sibly detect out-of range generated values (still experimental).

All these tools are located in tools/benchmark and have to be
compiled separately. After having prepared the needed dependan-
cies (libfaust with embedded LLVM and Interpreter backends), use
make & sudo make install to compile and install them.

4. REMOTE DSP DEPLOYMENT

4.1. The libfaustremote library

With the availability of dynamic compilation chains, DSP code can
be remotely deployed, possibly migrating too heavy CPU needs
on more powerful machines, or separating control, compute, and
rendering steps in more flexible setups.

Following a client/server model, the libfaustremote allows to
develop distributed compilation or execution setups. Using a proxy
like API, DSPs can be compiled and executed on distant machines.
Audio streams are sent, processed, and received using NetJack, as
in the following typical use-case (Figure 1).

The design and associated API has been previously presented
in [6]. Extensions have been developed since, allowing to simply
send and execute DSPs on the remote machine, using its own audio
driver:

• createRemoteAudioInstance allows to create a re-
mote DSP audio instance (a DSP instance wrapped with an
audio driver), from a given remote factory, with start and
stop methods

• deleteRemoteAudioInstance destroys the remote
DSP audio instance

On the server side, the following functions can be used to con-
trol the server:

!
!
!
!
!
!
!
!
!

!
!
!
!
!

!
!
!
!
!
!

!
!

!"#
!"#$%""!"#$

!"#$%"!
!"#$%&'(

!"#$%#&#'(%#)*+,$!%("-

!"#$%#&#'(%#)*+,-.%$-!#

!"#$%#&'()$!%*"+

!"#$%#&'()*+%$*!#

!"#$%&'()

!!"#$!!
!!"#!"#$%&'
!

!!"#$!!
!"#

!!"#$%&!"#$!
!!!"#$!!"#$!
!

#$%&'()!!!!!(*##$(%+*#!
!!"#!
!"#

!!"#!
!"#!!"#$%&'

Figure 1: Remote compilation and processing: audio streams are
sent, processed, and received on the client machine

• createRemoteDSPServer creates a FAUST remote DSP
server

• deleteRemoteDSPServer destroys the server

The server can then be started and stopped. Callbacks can be
set up to get notifications when new DSP factories and instances
are created or destroyed from the client side.

The complete (but still experimental) API is available and doc-
umented in the embedded/faustremote/remote-dsp.h header.

5. EXPERIMENTAL DEVELOPMENTS

5.1. The Rust backend

Rust is a system programming language initially developed by
Mozilla Research, which describes it as a “safe, concurrent, prac-
tical language.” Rust is syntactically similar to C++, with bet-
ter memory safety while maintaining performance. In the audio
domain where precise control of memory, thread usage and data
integrity in a real-time context is critical, it will probably take a
place quite rapidly. Since the language is still new, only few audio
applications or libraries have been developed 10.

An experimental Rust backend has been added in the FAUST
compilation chain. It is only able to produce scalar code for now.
A public data structure containing typed named fields, with a set of
associated functions is generated, following the regular C++ class
model used in the C++ backend.

A very basic JACK based architecture file has been developed,
to be used with the faust2jackrust script. It allows to generate
and test standalone programs, but the controller interface is not yet
connected to the compiled DSP and parameters cannot be changed
dynamically yet.

6. CONCLUSION

Tools to expand the deployment of the FAUST compiler, to test the
API, optimize and benchmark the DSP code, have been presented.
We invite developers to test and extend them, and contribute their
improvements back to the FAUST ecosystem.

10https://github.com/RustAudio

IFC-4

https://github.com/RustAudio

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

7. REFERENCES

[1] Dominique Fober, Yann Orlarey, and Stéphane Letz, “Faust
architectures design and osc support,” in 14th Int. Conference
on Digital Audio Effects (DAFx-11), 2011, pp. 231–216.

[2] Stéphane Letz, Yann Orlarey, and Dominique Fober, “Compil-
ing Faust audio DSP code to WebAssembly,” in Proceedings
of the Web Audio Conference 2017, Queen Mary University,
London, England, 2017.

[3] Sarah Denoux, Stéphane Letz, Yann Orlarey, and Dominique
Fober, “Faustlive, just-in-time faust compiler... and much
more,” in Proceedings of the Linux Audio Conference 2014,
ZKM, Karlsruhe, Germany, 2014.

[4] Yann Orlarey, “Version librairie du compilateur Faust,” in
INEDIT Project, ANR-12-CORD-0009, Programme ContInt,
2014.

[5] Stéphane Letz, Yann Orlarey, and Dominique Fober, “FAUST
Domain Specific Audio DSP Language Compiled to We-
bAssembly,” in Proceedings of TheWebConf 2018, Lyon,
France, 2018.

[6] Stéphane Letz, Yann Orlarey, and Dominique Fober, “Audio
Rendering/Processing and Control Ubiquity? A Solution Built
Using the Faust Dynamic Compiler and JACK/NetJack,” in
Proceedings of the International Computer Music Conference
2014, Athens, Grece, 2014.

IFC-5

	1 Introduction
	2 Dynamic compilation
	2.1 The interpreter backend in libfaust
	2.1.1 Interpreter internals
	2.1.2 The interpreter API
	2.1.3 Performance
	2.1.4 Use cases

	2.2 Using libfaust and the WebAssembly backend
	2.2.1 Using Node.js
	2.2.2 Using the WAVM runtime
	2.2.3 Using cretonne and wasmstandalone

	2.3 Testing libfaust and LLVM/interpreter backends

	3 Optimisation Tools
	3.1 The measure_dsp and dsp_optimizer DSP classes
	3.2 The faustbench tool
	3.3 The faustbench-llvm tool
	3.4 The interp-tracer tool

	4 Remote DSP deployment
	4.1 The libfaustremote library

	5 Experimental developments
	5.1 The Rust backend

	6 Conclusion
	7 References

