
Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

 IFC-1

FAUST IN IPLUG 2: CREATIVE CODING AUDIO PLUG-INS TEMPLATES FOR DAFX-08, FINLAND, FRANCE

Oliver Larkin
Creative Coding Lab, University of Huddersfield

Huddersfield, UK
oliver.larkin@hud.ac.uk

ABSTRACT

FAUST is a powerful domain specific programming language for
audio Digital Signal Processing (DSP) with many options for
quickly compiling to different “architectures” including audio
plug-ins. This functionality is highly suited to rapid prototyping
but can also produce robust and performant binaries. When
FAUST is used in larger software, it is more often dedicated to
specific elements of a DSP graph and combined with extra C++
code where additional DSP, user interface (UI) and other aspects
of the application are managed. This paper discusses the author’s
efforts towards seamless integration of FAUST directly into
iPlug - a popular C++ audio plug-in framework, that comple-
ments FAUST with a graphical interface toolkit and platform
support. The integration allows developers to easily combine
multiple FAUST DSP routines with additional C++ code. It also
permits over-sampling the signal processing. A workflow is pre-
sented which uses the libfaust embeddable compiler for dynamic
compilation during development and then the traditional architec-
ture-based FAUST compiler to statically compile code for distri-
bution. This is demonstrated by showing how a FAUST DSP
block would be added to an existing iPlug plug-in. Finally, some
examples of how this has been used are discussed.

1. INTRODUCTION

The internet and source code management platforms such as
github1 have heralded a huge change in software development
practices. Open source projects are more visible, and collabora-
tion is easier than ever before. Alongside this, improvements in
compiler technology and powerful free tools such as integrated
development environments (IDEs) make programming much
more accessible than it has been in the past. New approaches to
software development involving interactivity and real-time feed-
back2 are available in mainstream IDEs3.
There are two popular packages for “Creative Coding” in C++,
namely OpenFrameworks6 and Cinder7. These packages include
libraries and optional extensions for a variety of audio-visual
tasks. They come with tools which simplify setting up a project
and they reduce the amount of time spent on non-creative tasks
such as configuring the IDE. As well as reducing complexity,
these packages also offer good real-time performance since they
use a low-level, compiled programming language. Similarly, in
the world of audio software development iPlug11 and JUCE12
allow developers to realise their ideas for audio plug-ins and apps

1 https://github.com
2 http://worrydream.com/#!/InventingOnPrinciple
3 https://developer.apple.com/swift/blog/?id=35
6 http://openframeworks.cc/
7 https://libcinder.org/
11 https://github.com/olilarkin/wdl-ol
12 https:// juce.com

across multiple plug-in formats and platforms without having to
concern themselves with the low-level details of platform or
plug-in APIs. Developers can simultaneously write multi-format
plug-ins and focus on the DSP, user interface (UI) and user expe-
rience (UX) rather than the specifics of individual API imple-
mentations. These frameworks also have functionality for creat-
ing the kinds of UI that are often used in audio software, includ-
ing widgets for buttons, dials, sliders and meters using either
bitmaps or vector-based drawing. They can also simplify imple-
mentation details; for instance, in iPlug, much like in FAUST,
creating a parameter can be achieved with a single line of code:

GetParam(0 /*id*/)->InitDouble("Gain"
/*name*/, 0. /*default*/, -70. /*min*/, 12.
/*max*/, 0.1 /*step*/, "dB"/*label*/);

FAUST provides similar advantages in terms of the concise ex-
pression of complex DSP algorithms, but although FAUST has
the concept of “UI” this is merely an abstraction that is interpret-
ed by an "architecture" file. It provides an interface (which may
not be graphical) to the DSP [1]. If the developer wishes to pro-
vide a customised graphical UI (GUI) for their FAUST creation,
they need to use an extra library and implement their own archi-
tecture file. In addition to GUI, there are also other situations
where FAUST can be used most effectively alongside additional
C++ code. For instance, in DSP requiring switchable signal paths
or multi-rate capabilities a developer may use multiple FAUST
.dsp files to produce multiple isolated processors. These can be
combined with some “glue” code which handles the multi-rate
processing and/or switching of code blocks. Lastly, FAUST has
its own generic polyphony capabilities via poly_dsp [1], but
these may not be flexible enough to meet the requirements of cer-
tain software synthesisers, since there are many nuances in how
synthesisers handle polyphony and modulation. For example,
typically virtual analogue synthesisers would have a single low
frequency oscillator, which applies the same modulation across
all voices, where FAUST’s approach using a single .dsp file
would limit the user to per-voice modulation.

Considering the different tools and software development trends
discussed in this section, the work presented in this paper aims to
address the following problems:

• How can the strengths of the FAUST DSP language be

combined easily with those of C++ and iPlug to promote the
creative-coding of audio plug-ins?

• How can FAUST’s embeddable compiler improve the work-
flow and shorten the feedback loop when creating DSP for
audio plug-ins?

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

 IFC-2

1.1. Existing workflows with FAUST

The FAUST workflow has traditionally involved processing .dsp
files (text files describing a DSP block in the FAUST language)
with a command line compiler. In recent years many more op-
tions have become available and several tools have been built
using libfaust - an embeddable compiler based on LLVM, includ-
ing Faustlive [2]. FAUST extensions have been created for dif-
ferent software packages including Max, Puredata, Chuck,
Csound and Processing, some of which feature JIT (just-in-time)
compilation. The author’s juce_faustllvm module is an extension
for the JUCE C++ framework that supports embedding libfaust
in the JUCE audio processor graph 1314. There have also been
many developments integrating FAUST with web technologies
[3], facilitating a quick workflow, without requiring the user to
install any software. The FAUST online compiler allows users to
compile their FAUST .dsp file to platforms that they may not be
able to compile to on their local machine. For larger projects the
FAUST distribution comes with feature-rich architectures for Qt
and JUCE [4], but these are designed for generic GUI’s. In gen-
eral, the many options FAUST provides excel at prototype out-
puts with a generic GUI, or small functional, interactive tools for
musical composition/performance. For larger projects the most
practical workflows involve writing your own architectures
and/or combining the outputs from the command line compiler
with existing C++ code. This process can be laborious, involving
multiple pieces of software and requiring command line fluency.
Attempts have been made to introduce extra constructs to simpli-
fy this process [1], but there is no one-size fits all solution in au-
dio DSP.

1.2. iPlug 2

The iPlug C++ plug-in framework was originally developed by
John Schwartz and open sourced in 2008 as part of Cockos’
WDL15, a liberally-licensed library of reusable C++ code which
is used to build the DAW Reaper. Since that time, iPlug has been
improved by numerous contributors, with the author’s version
(publicly released in 2011) being one of the most popular, well
maintained and feature-complete forks. Many commercial, free
and open source plug-ins have been built with this version of
iPlug and it has been used by researchers, hobbyists and compa-
nies. A significant update is in progress at the time of writing (to
be released in 2018) with many new features. The main motiva-
tion for this update is support for Web Audio Modules
(WAMs)16, a new format for VST-style instrument and effects
plug-ins that integrate with the Web Audio API [5][6]. This new
platform has its own challenges. One of those is the size of the
payload since web pages must load quickly over remote connec-
tions. The lightweight nature of the iPlug framework makes it an
ideal tool for producing WAMs, and there are many desktop
plug-ins written using this framework already that can be ported
across to the web platform.
The author has taken this opportunity to rework the framework
and improve the feature set in numerous ways, whilst maintain-
ing the simplicity of the original design. The original version of
iPlug included support for developing VST2 and AudioUnit
plug-ins. The author’s fork extended the existing functionality
and added VST3, RTAS and AAX (Pro Tools) formats, as well
as stand-alone applications on Windows and macOS platforms.

13 https://www.youtube.com/watch?v=INlqClEOhak
14 https://github.com/iplug2
15 http://www.cockos.com/wdl/
16 http://www.webaudiomodules.org

Alongside FAUST support, the new features of the forthcoming
iPlug 2 include:

• Modernised and simplified code base for C++11
• Extensive documentation
• Rewritten graphics interface supporting several different 2D

drawing back-ends including the latest hardware accelerated
technologies such as Metal on macOS/iOS

• Separation of graphics and plug-in code.
• Vector graphics support, including SVG and path-based

drawing routines
• Graphic scaling and seamless support for high resolution

displays
• Web Audio Module API support. A plug-in and its user in-

terface can be compiled from the same C++ codebase and
run in the web browser as well as traditional desktop hosts.

• Linux and Raspberry Pi support (standalone only)
• Reworked approach to concurrency and thread safety
• A library of “extras” featuring utility classes for common

music DSP tasks such as over-sampling, polyphony, param-
eter smoothing, oscillators.

The following sections will introduce the ways in which the new
version of iPlug integrates FAUST.

2. FAUST IN IPLUG 2

FAUST support in iPlug is implemented so that FAUST can be
used for certain tasks and combined with C++ for tasks where
that language is more appropriate. In this way, the developer can
control the signal routing and the mixture of C++ with FAUST -
they do not have to manually keep track of all the different files
and extra glue code. The implementation is designed so that dy-
namic compilation may be used at the development/debug stage,
and statically compiled code may be used for distribution/release
builds. Using the dynamic compiler maintains the rapid-
workflow found in FAUST’s JIT-based frontends, but it means
that development may be done from within the same application
(the C++ IDE) that will be used to create the final distributable
version.
FAUST support in iPlug 2 comes in the form of a C++ interface
class and two different implementation classes that inherit it.
Firstly, there is a traditional FAUST architecture file. Even with-
out using libfaust, a developer can utilise this architecture file on
the command line, to produce a single C++ file – a module -
ready to integrate with an iPlug plug-in. The iPlug FAUST C++
interface includes functionality for binding iPlug parameters to
FAUST parameters and over-sampling the DSP. The other class
that inherits from the interface uses the libfaust dynamic compil-
er, and its interface file contains compile-time pre-processor
macros to facilitate switching between using the dynamically
compiled version of a FAUST .dsp file and the static version. It
is envisaged that when building debug builds of a project, the JIT
compiler will be used. When building release versions, the static
compiled code will be used. Every time the .dsp file is dynami-
cally compiled, it is also statically compiled. Just by switching
build configurations in the C++ IDE or makefile, a completely
different code path is chosen, although the C++ class interface is
identical. When using the JIT compiler, a file watcher keeps
track of any modifications to the FAUST .dsp file on disk, and
recompiles both the JIT and the static code if the source code
changes. In this way development can take place whilst a plug-in
is loaded in a Digital Audio Workstation (DAW), providing a

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

 IFC-3

significantly faster workflow to the traditional C++ approach
where the binary must be recompiled every time the code is mod-
ified.

2.1. Adding FAUST to an iPlug 2 project

Assuming the developer has built and installed libfaust in the
standard locations, it is trivial to add FAUST elements to an
iPlug C++ project. iPlug provides a well-defined folder structure
and global configuration files to set build settings that apply to
multiple plug-ins. Several of these default build settings relate to
FAUST and specify the exact include paths for header files and
libraries. In an iPlug 2 project it is simply necessary to add two
build settings and all the dependencies will be found. The header
file IPlugFaustGen.h provides the necessary pre-processor
macros to deal with switching between JIT and static compiled
DSP. For each unique FAUST processor, the macro
FAUST_BLOCK needs to be declared with an identifier/name and
a C++ variable name passed as an argument, along with an abso-
lute path to a .dsp file on disk, a voice count (in the case of a
polyphonic DSP) and over-sampling factor (see line 16 in Figure
1). This will declare a C++ variable linked to the block, which
would typically be a member variable of the iPlug plug-in class.
Calling the Init() method will trigger an initial JIT compila-
tion. The method FaustGen::CompileCPP()can be called
to invoke the command line FAUST compiler and produce a
single C++ file containing implementations for every unique
FAUST_BLOCK declared. This statically compiled C++ file is
automatically included by the pre-processor when the macro
FAUST_COMPILED is defined and all dynamic compilation re-
lated code is excluded. Since the interface is the same for both
static and dynamic modes, no modifications need to be made to
the code. When FAUST_COMPILED is not defined, calling
FaustGen::EnableTimer(true) will mean that dynamic
compilation and static compilation will be triggered automatical-
ly if the specified .dsp file for a block is modified.

The following code listings with comments demonstrate how a
Faust .dsp file “Fuzz.dsp” can be integrated into an iPlug project.
The project does not have a user interface to keep the code as
simple as possible.

 declare name "Fuzz";
 import("maths.lib");

 g = vslider("Gain", 0, 0., 1, 0.1)

 process = (*(g) : tanh), (*(g) : tanh);

Figure 1: IPlugEffect.h C++ interface with FAUST DSP

Figure 2: IPlugEffect.cpp C++ implementation

2.2. Over-sampling a FAUST DSP processor

Over-sampling is a common technique in signal processing that
is used to perform certain calculations at a higher sample rate
than others. In audio DSP this is often needed when working
with nonlinear processes such as wave-shaping which can intro-
duce spectral components that alias. In its current version,
FAUST does not include functionality for multi-rate processing,
so the developer is required to implement this externally in C++.
Over-sampling is nontrivial to implement, requiring precise fil-
tering to remove spectral components that might cause aliasing at
each stage of the up/down sampling process. iPlug 2 comes with
helper classes for up to 16x over-sampling based on the HIIR
library17 using IIR half band poly-phase filters. These classes are
integrated into iPlug’s FAUST interface code, and when enabled
no additional boilerplate code is required to over-sample a
FAUST processor.

3. EXAMPLES

This section introduces some examples of how the iPlug 2
FAUST integration has been used.

3.1. H.A.C.K Decoder Tester

The Ambisonic Decoder Toolkit (ADT) [7] is a set of
Matlab/GNU Octave scripts that generate ambisonic decoders in
a variety of formats including FAUST .dsp files. The FAUST
output is the most feature complete of all the options provided.
Alongside the code that is generated, a collection of visualisa-
tions help the user understand the decoder’s performance. The
author required a tool for rapidly auditioning different decoders
generated using the ADT. By combining iPlug and FAUST a
VST plug-in was developed that displays the visualisations,
whilst JIT compiling and running the associated .dsp file. This
plug-in is part of the forthcoming Huddersfield Ambisonic Crea-
tion Kit (H.A.C.K), which is a collection of utility plug-ins for
working with ambisonics in the Huddersfield multi-channel stu-
dios.

17 http://ldesoras.free.fr/prod.html

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

 IFC-4

3.2. Bell Field

As a proof of concept, the JIT compilation was used to produce
an experimental musical instrument plug-in that generates 3D
spatial audio using HOA. Using the physical models of bells pre-
sented in [8], which are available as FAUST .dsp files, the author
created a polyphonic synthesiser that operates in HOA. Tuned
bells are spatially positioned around the soundfield and may be
struck by playing MIDI notes. The bell model may be changed
on the fly by JIT compiling a different .dsp file from the collec-
tion and all voices are updated. The tools developed here allowed
a very quick turnaround time from idea to realisation. Working in
HOA in real time can be demanding even on modern CPUs; due
to the high channel counts required and coupled with the poly-
phonic nature of the synthesiser, it was challenging to produce
efficient code. For this reason, it was beneficial to be able to mix
between C++ and FAUST code, in order to have fine-grained
control of the rate at which expensive operations are performed.

3.3. Faustgen plug-in

As well as using the libfaust embeddable compiler as a tool in the
development chain, iPlug’s FAUST support also allows it to be
used in a release build plug-in, if desired. A JIT compiling audio
plug-in has been developed mirroring the functionality of
GRAME’s faustgen~ Max object. This plug-in includes an inte-
grated code editor, based on the WDL ncurses18 emulator, and is
designed for prototyping and for end users who would like access
to FAUST’s libraries directly inside their DAW.

Figure 3: Faustgen VST in Ableton Live

4. FUTURE WORK

Development of iPlug 2 is ongoing. The primary focus of the ef-
forts regarding FAUST integration discussed in this paper in-
volve the DSP, with the assumption that most professional plug-
ins (or at least most widely distributed plug-ins) will require a
custom user interface that extends beyond the remit of FAUST’s
UI layout metadata. However, it would be useful to be able to
create widgets automatically based on FAUST UI specifications
(checkbox, hslider, vgroup etc.), much in the same way is it pos-
sible using FAUST’s Qt and JUCE [4] architecture files. Support
for control metadata should be added to allow MIDI control of

18 https://en.wikipedia.org/wiki/Curses_(programming library)

parameters as well as sample accurate timing via timed_dsp as
described in [1]. The author plans to improve the reliability of the
JIT compilation in iPlug’s FAUST support, by investigating
compiling out of process and synchronising updated DSP safely
in a click free manor in real-time. Work also needs to be done on
the safe management of parameter count changes.

5. CONCLUSIONS

This paper presented the integration of two open-source projects
to provide a complete workflow for the development of profes-
sional quality audio software targeting multiple platforms. The
power of FAUST’s embeddable compiler, concise functional
syntax and extensive DSP libraries combined with iPlug’s sim-
plicity, graphical user interface and platform support makes a
complementary package. By abstracting the complex elements of
plug-in APIs, development becomes arguably more enjoyable,
and more time is spent on the elements that can be called “crea-
tive”, such as DSP, UI and UX, hence the paper’s title “creative
coding audio plug-ins”. The author hopes that this integration
will help promote the use of the FAUST language in both profes-
sional and hobbyist audio software development.

6. ACKNOWLEDGMENTS

The author would like to thank Alex Harker and Hyunkook Lee,
Jari Kleimola, Justin Frankel, John Schwartz, the FAUST team
and The Creative Coding Lab at the University of Huddersfield.

7. REFERENCES

[1] Stéphane Letz, Yann Orlarey, Dominique Fober, Romain
Michon. “Polyphony, sample-accurate control and MIDI
support for FAUST DSP using combinable architecture
files” Linux Audio Conference (LAC-17). Saint-Etienne,
France, 2017

[2] Sarah. Denoux, Stéphane. Letz, Yann. Orlarey, and
Dominique. Fober, “Faustlive: Just-in-time faust compiler...
and much more,” in Proceedings of the Linux Audio Con-
ference (LAC-12), Karlsruhe, Germany, April 2014.

[3] Stéphane. Letz, Sarah. Denoux, Yann. Orlarey and
Dominique. Fober, “Faust audio DSP language in the Web”,
In Proceedings of the Linux Audio Conference (LAC-15),
Mainz, Germany, 2015

[4] Adrien Albouy and Stéphane Letz. Faust audio DSP lan-
guage for JUCE Linux Audio Conference (LAC-17). Saint-
Etienne, France, 2017

[5] Jari Kleimola and Oliver Larkin, “Web Audio Modules”, in
Proceedings of the 12th Sound and Music Computing Con-
ference (SMC-2015) Maynooth, Ireland, 2015

[6] Michel Buffa, Jérôme Lebrun, Jari Kleimola, Oliver Larkin,
Stéphane Letz. “Towards an open Web Audio plug-in
standard.”, in Proceedings of the International World Wide
Web Conference (WWW ’18), Lyon, France, 2018

[7] Heller, Aaron J., Eric Benjamin, and Richard Lee. "A toolkit
for the design of ambisonic decoders." In Proceedings of the
Linux Audio Conference (LAC-12), 2012

[8] Romain Michon, Sara R Martín. “Faust Foundry: A Soft-
ware Kit to Make Bell Physical Models for Musical Appli-
cations”. Resonance and Remembrance: An Interdiscipli-
nary Bell Studies Symposium, Michigan, 2017

