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ABSTRACT

In this paper we present the deployment of a signal processing
application that was developed with the FAUST programming lan-
guage. The Soundjack realtime communication application is ex-
tended by a server cloud to handle up to 60 musicians of an or-
chestra. Each musician is connected to a Soundjack UDP client.
An individual stereo mix of the multiple audio streams originat-
ing from the multiple Soundjack clients has to be provided to each
listening musician. The bandwidth required to receive 60 parallel
audio streams may exceed the bandwidth available on the client
side. Also it is neither necessary nor efficient to transmit 60 x
60 streams from the server to the clients. Therefore the individ-
ual mixes are computed on the server side and then distributed to
the clients. Multiple signal processing servers are deployed in the
server cloud and handle audio streams with the JACK sound server.
We developed an audio mixing application to mix the audio data
that is transmitted by the UDP streams. The application is inte-
grated in the community web page, which is part of the Soundjack
server cloud. The mixing application was successfully deployed
and integrated within the community web service and the JACK
audio environment.

1. INTRODUCTION

1.1. Soundjack and fast-music

Soundjack [1] is a realtime communication software that estab-
lishes up to five peer to peer connections. This software was de-
signed from a musical point of view and first published in 2009 [?2].
Playing live music via the public internet is very sensitive in terms
of latencies. Thus, the main goal of this application is the min-
imization of latencies and jitter. An inherent property of such a
peer to peer network is that each signal source has to concurrently
transmit its own stream to each client (figure[I).

The goal of the research project fast-music, in cooperation
with the two companies GENUIN [3]] and Symonics [4], is to de-
velop a rehearsal environment for conducted orchestras via the
public internet. 60 musicians and one conductor shall play to-
gether live while being distributed inside Germany with the topol-
ogy shown in figure 2]

Because a peer to peer network topology does not scale well
along a growing number of nodes, a star network topology is cho-
sen to allow live communication for 60 participating musicians, as
shown in figure[T} Further field of research is the transmission of
low delay live video streams and motion capturing of the conduc-
tor.
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Figure 1: Left: Peer to Peer Network Topology, Right: Star Net-
work Topology

Figure 2: Logical Center for Centralized Server-based Network
Music Performances in Frankfurt on the Main, Germany

1.2. Motivation

Inside the Soundjack cloud, digital signal processing is applied to
audio and video streams. In most of the cases such signal pro-
cessing is computationally expensive, which means that unwanted
latencies may emerge, thus a graphics card based solution will be
investigated. Preliminary work, which investigates the feasibility
of the graphics card as an audio co-processor is presented in [5].
Required digital signal processing contains for example audio er-
ror concealment due to UDP packetloss. Our error concealment
approach deals with the UDP packetloss by transforming the audio
stream into the Wavelet [6]] domain and decode it with the Viterbi
algorithm [7]], to predict the most likly sequence of audio samples
from the Wavelet coeffitients. The Viterbi decoder relies on a Hid-
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Figure 3: Soundjack Realtime Processing Cloud

den Markov Model (HMM) (8] that is trained by a recurrent neural
network, that has yet to be defined.

The training phase in this machine learning approach is run-
ning offline with Wavelet coeffitients that are generated from audio
samples that result from synthesized MIDI notes.

During the decoding (online) phase, realtime audio data is fed
into the graphics card that is running the Viterbi decoder.

This is work in progress and it is yet to be evaluated, whether
the Viterbi decoder and the Wavelet transforms can be implemented
with FAUST.

Another signal processing application shall be a virtual room
simulation, also processed on the graphics card [9], that places
the Soundjack client’s sound sources, i.e. the user’s musical in-
struments, in a virtual soundscape. This virtual soundscape shall
be rendered for each user and shall be implemented using finite
impulse response (FIR) filters and apply some binaural
encoding that optimizes the immersion of the virtual soundscape
for headphones. The strategy to implement such a signal process-
ing application is based on a graphics card based solution, since a
heavy CPU utilization is expected.

Audio Video Bridging / Time-Sensitive Networking (AVB /
TSN) is a technology which handles real time constrained audio
and video streaming in computer networks. This technology is
a set of IEEE 802.1 industry standards, which operate on OSI-
Layer 2 and is used as the underlying infrastructure for the
Soundjack realtime processing cloud. The two AVB server types
required for the Soundjack cloud are an AVB proxy server and an
AVB processing server, which are described in detail in [T3]. The
AVB proxy and processing servers are each connected to the same

AVB LAN segment. Additionally, each server is also connected
to a non-AVB LAN Segment, as well as to the Soundjack-Session
and Management servers. Since AVB connection management and
control traffic is not necessarily time-sensitive, it is sufficient to
use a non-AVB LAN segment for command and control purposes.
The Soundjack session server provides the community services of
Soundjack and also handles the connection management of public
internet streams, peer to peer connections as well as client-server
connections. To distribute the computational complexity of con-
necting 60 streams to each other, mix them and apply other signal
processing algorithms, a scalable solution for a realtime processing
cloud is required, figure 3] shows the network topology approach
of the Soundjack realtime processing cloud.

In this paper we present the development, the evaluation and
the integration of a FAUST application, that had previously
been developed in the C programming language. The C applica-
tion did not reach a testable state until today. Thus, a different and
presumably faster development approach is tested. The derived bi-
naries achieve comparable or even better performance as programs
by seasoned C++ programmers [13].

2. WEB APPLICATION INTEGRATION

The Soundjack user interface is provided as a web page. It allows
to control the parameters used by the Soundjack streaming client,
such as used audio interfaces, codec and bitrate, sizes of sample
and network buffers, or level of the user’s own signal (figure f).
In order to achieve an overall balanced mix the newly developed
server side mixer is employed. The corresponding user interface
is also a HTML user interface exposed via HTTP (figure [6). The
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Figure 4: Soundjack User Interface

current integration into the existing user interface is achieved by
an additional menu entry.

The Soundjack community and call server uses the Docker
virtualization technology for a webserver (Apache), database
servers (MySql, Redis, Memcached), servers for traversal of NAT
middleboxes (called natl and nat2), and one session service to han-
dle individual Soundjack sessions. Each such service is running on
a Linux kernel. The webserver offers a content management sys-
tem (CMS) and delivers the user interface for configuring the mul-
timedia client. For serverside scripting PHP is used, the delivered
content consists of HTML, CSS, and Javascript. The used CMS is
Joomla which itself uses MySql as its main data backend, addition-
ally Redis as triple-store, and Memcached as in-memory database.
The user database of Joomla resides in the MySql database and is
also used by the session service. The services natl, nat2, and ses-
sion have been developed in the C programming language by the
fast-music research group.

In order to facilitate deployment to the different environments
for development, testing and production, a high degree of automa-
tion has been found useful. To achieve this each service is con-
tainerized using docker as container engine. A docker image con-
tains the static dependencies of a service. A container is a running
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copy of an image, which then provides the actual service.

In order to create an image it is possible to start from scratch
or build upon existing images. A source for images is a so called
docker-registry, e. g. Docker Hub [17]. Image definitions are
stored in a Dockerfile that describes how the image is built. The
tool docker-compose [I8] is used for the management of the in-
frastructure. Docker-compose introduces the concept of a service.
The service definitions are stored in a docker-compose.yml file.

As Dockerfiles define images, docker-compose.yml files de-
fine the derived services. This nicely separates the build from the
run time configuration. For running a service mainly the config-
uration for the network environment, service dependencies, and
possibly volumes is needed. Also, for each service it references
the underlying image and optionally its build configuration. The
build configuration then defines the static content of an image.

The build of the images that provide C-programs as services
uses a multistage build approach. The build stages use a compile
container, which is based on the official gcc-container from the
Docker Hub and customized to meet each program’s build depen-
dencies. After compilation, the resulting executable is copied into
the image on which the service container is based. Original im-
ages found on Docker Hub serve as base image for the Redis and
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Electron

Memcached services, in contrast to the Joomla and MySql services
images that required some customization, e.g. no definition of vol-
umes in the Dockerfile to keep own content. Instead we found it
more robust to define volumes solely in the docker-compose.yml
and deem them a runtime rather than build time configuration.

For the newly developed mixer a variation of the build process
is currently implemented in a two step approach. First a container
for the compilation of the mixing application is defined and then
used for the compilation. The resulting binary is copied to the
runtime environment, which could either be inside or outside of
a container. A runtime container has been implemented and used
for the interaction with the web interface of the developed mixing
application. The compiler and runtime containers have been found
useful for development purposes as they explicitly capture the re-
quirements for compiling and running the mixer application. This
facilitates repeated and consistent set up. The sizes of the resulting
experimental images are currently 2 GB for the compile container
and about 800 MB for the runtime one. They are not yet optimized
for size.

An Electron application has been developed for Soundjack.
That application bundles the native Soundjack Client into a browser
with an integrated scripting environment (Electron [19] and
node.js [20]). In order to extend the range of available audio pro-
cessing capabilities on the client side, the integration of a FAUST
application into that Electron application has been investigated.
The building process for the integration of native binaries is au-
tomated, the distribution (compiling, upload of binaries, down-
load and repackaging into the Electron Application) of the binaries
however, is still cumbersome. Promising in regards of the main-
tainance process seemed the integration of a WebAssembly.

An integration of a WebAssembly as compiled by
FAUST into an application bundle has been investigated. That
application bundles the Soundjack Client into a browser with an
integrated scripting environment (Electron [19], node.js [20]]). For
this purpose an Electron application has been developed in Type-
script [21]]. In order to circumvent cross origin resource sharing
restrictions, the WebAssembly code is served from a web server
internal to the developed Electron application (see the Typescript
code in the listing below). This provides the possibility to also
use FAUST programs on the client side for all platforms where the
Electron application is available. Figure[5]shows the OSC example
running inside the Electron application.
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var promise = new Promise ((resolve:any,
reject:any) => {
var webserver = Express{();

webserver.use (Express.static (’
webserver_root’));
webserver.listen (8888);
}) i
promise.then((res:any) => {
console.log(’internal webserver started’)

’

}) i

3. JACK AUDIO INTEGRATION

The mixing application is compiled with faust2jackconsole
with the ~httpd option set. The existing user interface is offered
as a web user interface therefore the HTTP interface of the FAUST
mixing application integrates smoothly. Obviously on the head-
less server no user interface is required. On server start up, the
mixing application is forked by the main process that also starts
the JACK [22] server. The server software also forks two pro-
cesses for the reception and transmission of the audio streams.
These two processes create the JACK clients "AVB_Talker" and
"AVB_Listener". The incoming audio stream is originating from
the "AVB_Listener" and for each stereo audio stream two audio
channels are created. This also applies to the "AVB_Talker", two
channels per audio stream. All audio channels of the
"AVB_Listener" client are connected to the corresponding input
channels of the mixing application with the JACK client name
"soundjackMulticastMixer", the mixed stereo output channels of
the "soundjackMulticastMixer" are connected to audio channels
of the "AVB_Talker" client. Thus, a mixed stereo signal can be
distributed to all streams that return to the Soundjack clients.

4. AUDIO MIXING APPLICATION

Up to 60 musicians shall participate in a Soundjack server ses-
sion. A single proxy server is able to handle up to 8 Soundjack
client streams. Thus, eight pairs of proxy and processing servers
are required to provide enough resources for such a session. In a
conventional mixing environment, all 60 audio streams would be
connected to a single mixing stage, which would apply proper sig-
nal mixing and routing. The Soundjack cloud on the other hand,
uses multicast streaming technologies of the underlying Ethernet
network, which is not subject of this paper. One processing server
receives eight stereo streams from its paired proxy server, mixes
them and transmits the mixed stereo stream via multicast to the
seven other processing servers. The volumes of each incoming
stream in the mix is controlled by the master user (e.g. the pro-
ducer or conductor). The second mixing stage gives control to the
eight client users. Any client user is allowed to control the volume
of their own send stream, mixed to his or her own return stream.
Any remaining stream volume remains the same as after the first
mixing stage. Thus, the Soundjack client users can have a so called
"N-1" mix, i.e. a mix of N streams minus the users own stream.
The audio signal originating from this client would suffer from
round trip latency, which would be an obstacle for playing time
aligned to the other musicians. Finally, each of the "N-1" mixes
is mixed with the incoming multicast stereo streams of the other
processing servers, i.e. the other Soundjack client streams. Two
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Figure 6: Integration of the HTTP Interface of the Mixing Application into Electron

different types of audio inputs and audio outputs are required to Consider the following values for the variables in the code list-
map these requirements: ing above:

e Inputs: Soundjack client stream, multicast stream

e Outpus: Soundjack client "N-1"-mix stream, mutlicast mix e N1 = 7 and represents the number of incoming multicast
stream streams,

FAUST provides simple expression syntax to build this com-
plex routing structure. When we execute the application with the e N2 = 8 and represents the number of incoming Soundjack
process identifier, the input multicast streams are immediately client streams,
mixed down to a stereo channel, which then has to be connected
to the "signalRouter" alongside the eight Soundjack client input

M= d ts th ber of outcomi djack
streams. The resulting block diagram is shown in figure[7} ¢ 8 and represents the number of outcoming Soundjac

client streams.

process =
vgroup ( "[3]", For a better understanding of the code, the "mcStereoStream
mcastInMix (N1) , Output" identifier represents the multicast mix stream, as it is

par (in, N2, (_,_)) passed through the blocks. The input audio level for each of the
signalRouter (N2, M) incoming multicast streams is displayed with VU meters, eight of

) ; which are created with the "par" statement and mixed to

mcStereoStreamOutput” with the ":>" operator.
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mcStereoStreamOutput (1,r) = 1,r;
mcInput (in) =
hgroup ("MCast In %in",
vgroup ("L", vumeter),
vgroup ("R", vumeter)
) i
mcastInMix (N1) =
hgroup ("Mcast Input Mixer",
par (in, N1, mcInput (in))
:> mcStereoStreamOutput (_,_)
)

Thus, the "signalRouter" has nine stereo input channels, as
shown in figure [§] eight of which are connected to the
"splitMasterClient" block in parallel to "mcStereoStreamOutput",
which is presented in figure [T0] All of the nine channels are split
and distributed to "mcastOutputMixer(N2,M)" and
"sjcOutputMixer(N2,M)".

signalRouter (N2,M) =
mcStereoStreamOutput (_,_),
splitMasterClient (N2)
<: mcastOutputMixer (N2, M),
sjcOutputMixer (N2, M) ;

The two mixing stages for master and client control are repre-
sented by two independent volume paths in "sjcInSplitter(in)". A
stereo input channel is split into these two volume paths and both
volume and stereo panning are applied to each path independently.
Thus, the "sjcInSplitter(in)" block has two stereo output channels,
as shown in figure[J] Eight parallel "sjcInSplitter" blocks are gen-
erated, resulting in 16 stereo output channels.

sjcInSplitter (in) =
vgroup ("SJC %in",
sjcInputMeter (in)
<: volumeBlock (in)
in)

balanceBlock (
)

splitMasterClient (N2) =
hgroup ("Inputs",
par (in, N2, sjcInSplitter (in))
) i

The master volume is applied to the incoming multicast stereo
channels, while the client volume is blocked by "(_,_,!,))". The
remaining eight stereo channels are mixed down to a stereo mix,
which represents the first mixing stage, since the output is des-
ignated for the multicast output stream to the other processing
servers.

mcastOutputMixer (N2,M) =
mcStereoStreamOutput (!, !),
par (in, N2, (_,_,!,!) )
:> sjcOutputMeter (M) ;

With the use of a pattern matching function "selectChannel(out,
in)", the correct channel is selected. If the "out" and "in" argument
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Figure 10: "splitMasterClient" Block Diagram

of the function call are equal, the client volume is applied and the
master volume is applied in any other case. This represents the
crucial part of the second mixing stage. There are other syntac-
tical solutions to the same problem, but this code is much better
suited to clarify the problem at hand.

selectChannel = case{
(0,0) = (8,005
(lll) => (!III_I_)I
(2,2) => (!, 0, );
(3,3) == (0,005
(4,4) => (!, 5, )7
(5,5) = (!0, )
(6,6) == (0,005
(7,7) => (!, 5, );
(out, in) > (pp o l)p

i

The actual mixing stage "sjcOutputMixer(N2,M)", which is
presented in figure[TT] takes the output of the multicast input mixer
("mcStereoStreamOutput") alongside the master and client vol-
umes of all Soundjack client input stereo channels, splits and dis-
tributes them. Only this time it is split and distributed over the
eight Soundjack client outputs in the form of a "N2+1 x M" ma-
trix. The pattern matching function is now called by each of the
split Soundjack client stereo input channel generation.

sjcOutputMixer (N2, M)
mcStereoStreamOutput (_,_),

par (j_l’l, N2I (_I_I_I_) )

IFC-7

<: par (out, M,
(mcStereoStreamOutput (_,
par (in, N2,

)
:> sjcOutputMeter (out))

)

—)

(selectChannel (out, in))

’

The HTTP user interface of the successfully compiled FAUST
mixing application is shown in[f] In this figure, the client volume
of stream number 7 is set, the resulting level can be seen in the
third right-most VU meter pair of the last row. The second right-
most VU meter pair shows no level at all, which corresponds to
client level set to zero for client stream 8. But the master volume
of client stream number 8 is set, thus it is mixed - with a very low
level - to all other channels except itself.

5. EVALUATION

The presented prototype was merely an evaluation of the work-
flow and development complexity of a FAUST application. The
multicast mixing application has also been developed in the C pro-
gramming language, but without being integrated nor tested until
now. The reason is the complexity of the debugging process in
a multiprocessing and multithreading application. Developing the
mixing application from scratch under different design rules was
very fast. It took less than a week to implement a deployable au-
dio signal processing application with a JACK audio interface, an
HTTP user interface and a non trivial signal processing applica-
tion. Since the JACK audio interface was compiled on the fly with-
out any customization, each debugging iteration could be verified
by measuring the proper audio routing with common audio mea-
surement tools. Faulty code could be debugged either by interpret-
ing the error messages of the FAUST compiler, while design flaws
could be tracked via the automatically generated ".svg" files. No
memory management or handling of race condition needed to be
taken care of. In contrast, the development and debugging of a C
application requires preliminary memory management and proper
synchronization between threads and processes. A user interface,
that could be accessed via HTTP was not implemented in C yet.

The developed container environment greatly facilitated the
repeated and consistent compilation and execution of the mixing
application developed with FAUST. The setup of the two config-
urations took initially roughly three days of work which is now
reduced to one cloning the repository and starting the services. On
first start the necessary images are built. This initial build in the
given environment (CPU, network) took roughly an hour of non
interactive download, install, and compilation. Subsequent starts
of the services do not suffer from that delay.

6. CONCLUSIONS

FAUST being a domain specific language for audio signal process-
ing, allows to program inside that domain in a compact and conve-
nient way. The clarity of the code for the presented mixing appli-
cation underlines the fast development process and drove us to the
conclusion to develop the mixing application with FAUST, rather
than implementing our own from scratch.
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7. FUTURE WORK

One issue to be addressed in the future is the permission level of
the mixing application, to give different volume control permis-
sions to the conductor or producer and the musician. Thus, the
conductor or producer will have volume control over the mix for
the return streams as a whole and musicians will be able to control
the volume of their own instrument in their own return stream, to
generate an "N-1" mix. These permission will be enforced by the
utilization of the JSON HTTP interface. The possibilities that arise
from the "WebAssembly" compilation target seem promising and
open the stage for further experiments.

Since the integration of a WebAssembly as compiled with
FAUST into an Electron application is possible, it has to be
evaluated whether the WebAssembly approach fullfills Soundjack’s
latency requirements. The possibilities already arising from the
WebAssembly compilation target seem promising and open the
stage for further experiments.

While the container for running the mixing application has
been found useful for development purposes against its web inter-
face, the actual mixing functionality has not been tested inside that
container. This offers opportunities for further studies regarding
audio processing and possible realtime requirements. From there
also the size of the resulting runtime container may get optimized.

Furthermore, virtual room simulations developed with FAUST
shall be evaluated. For this purpose the acceleration of those com-
plex calculations by graphics cards shall be investigated in the fu-
ture. The development of complex signal processing applications
could be handed over to the Soundjack community, such that a pro-
ducer or conductor would be able to load their own room acous-
tics application into the processing servers of the Soundjack cloud,
without the necessity of an administrative integration.
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