
Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

GETTING OSC TO WORK BETTER WITH FAUST – A PROPOSAL

Albert Gräf

IKM, Musicology, Computer Music Working Group
Johannes Gutenberg University (JGU) Mainz, Germany

aggraef@gmail.com

ABSTRACT

Faust offers very comprehensive OSC1 support through its own
OSC library which gets activated with the -osc option of the tool
scripts. However, in the current implementation each Faust mod-
ule needs its own UDP port for incoming OSC, which eats up valu-
able UDP address space and becomes inconvenient if a lot of Faust
modules are to be run simultaneously. In this short note we sketch
out an improved system based on a client-server architecture (yet
to be implemented!) which we think will improve the OSC han-
dling considerably.

1. INTRODUCTION

A Faust program typically contains one or more control variables
for the purpose of changing certain parameters of the signal pro-
cessing algorithm implemented by the program. E.g., the follow-
ing little program realizes a simple linear gain control (after mixing
down the incoming stereo signal to mono):

gain = nentry("gain", 0.3, 0, 10, 0.01);
process = + : *(gain);

Let’s say that this program is in the monogain.dsp source file.
Without any further ado, the program can be equipped with an
OSC interface to control the gain parameter (with the external
name gain specified as the UI label of the control). If the tar-
get architecture supports it, you do this by simply specifying the
-osc option when compiling the program, e.g. (using the Jack
architecture):

faust2jack -osc monogain.dsp

When run from the command line, the resulting program will
print something like this, informing the user about the UDP ports
to be used for OSC communication:

Faust OSC version 0.96 application ’monogain’
is running on UDP ports 5510, 5511, 5512

Unless the UDP ports are chosen explicitly with correspond-
ing command line options, the program will use some default port
numbers automatically assigned by Faust’s OSC library, see [1,
Chapter 6] for details. There are always three port numbers for
OSC input, OSC output, and error notifications, respectively. In
the above example, port 5510 would be used on the OSC de-
vice for outgoing messages, and messages with the OSC address
/monogain/gain would then change the gain control in the
monogain dsp from the device. The address /monogain/gain
is generated automatically by the OSC library, but it is also pos-
sible to use custom OSC addresses by specifying corresponding

1Open Sound Control, cf. http://opensoundcontrol.org/

meta-data in the Faust program. In addition, Faust’s OSC library
provides OSC address matching using wildcards, and pre-defined
messages for discovering the OSC controls offered by a dsp mod-
ule.

This kind of setup will work very well with any kind of OSC
device connected to the (local) network, apps on smartphones and
tablets, real-time applications such as INScore, Max and Pd, and
MIDI/OSC bridges like Osculator and osc2midi. For instance, Fig.
1 shows TouchOSC, an Android and iOS application often used for
that purpose. It allows you to configure the OSC address of each
GUI element in a separate editor application (the UDP connection
is set in the app itself).

Figure 1: TouchOSC app (Android/iOS).

2. THE PROBLEM

The interface described above is comprehensive and supports ap-
plications involving just a few Faust modules really well. But it
quickly becomes unwieldy when working with a larger number of
modules. Typical use cases of this kind are plug-ins in a DAW and
modular synthesizers, which may well involve dozens of separate
dsp modules. It also becomes a problem if you want to control
multiple dsp modules from the same OSC device, because these

IFC-1

mailto:aggraef@gmail.com
http://opensoundcontrol.org/
http://inscore.sourceforge.net/
https://cycling74.com/
http://puredata.info/
https://osculator.net/
https://github.com/ssj71/OSC2MIDI
https://hexler.net/software/touchosc

Proceedings of the 1st International Faust Conference (IFC-18), Mainz, Germany, July 17–18, 2018

typically transmit OSC data only to a single port. Last but not
least, the use of a separate UDP port for each dsp instance seems
wasteful, given that OSC already has a much more advanced no-
tion of hierarchical address space built right into it.

A solution offered by the Faust language itself is to combine
existing dsp modules into larger ones, using the component con-
struct (cf. [1, Section 3.4.4]) and the operations from Faust’s block
diagram algebra (BDA). But this requires you to create different
modules for each needed dsp combo. When working in a plug-in
host environment such as a DAW, it is usually preferable to keep
the original Faust dsps separate and use the host environment’s own
capabilities to build synth-effect chains or signal graphs instead.
This offers more flexibility to musicians and sound engineers who
usually know their host environments very well and have their own
ways of working with plug-ins within them.

3. A SOLUTION

The problem sketched out above can’t really be avoided if Faust
modules run as stand-alone, self-contained units. However, it could
be solved by hooking into a dedicated Faust-OSC daemon running
on each system or for each user session, which would be imple-
mented as an OSC server sitting at a predictable address. This
could be done in user space, on top of the existing OSC facilities.
Faust’s OSC library could automatically launch that server if it
isn’t running already, to avoid the complexities and cross-platform
issues of a system service. This OSC server would then manage all
the Faust-OSC traffic for that session and dispatch OSC messages
using additional instance name prefixes to the OSC addresses, in
order to distinguish between different instances of a Faust mod-
ule. One might also throw in Zeroconf (Avahi/Bonjour) support2

to facilitate setup of the network connections (OSC apps like Tou-
chOSC readily support this protocol).

Fig. 2 depicts the kind of setup we have in mind here. Of
course the downside of such an approach is added latency, but
since the OSC server would dispatch to locally running Faust mod-
ules only, the overhead should be tolerable.

Figure 2: OSC devices controlling different Faust dsps via the
Faust-OSC server.

Another issue is the naming of the module prefixes, which
might require some cooperation from the host environments in
which the Faust dsps are running, so that the user can distinguish

2http://www.zeroconf.org/

different instances of the same Faust dsp. Automatic numbering
of the different instances might be a solution to this (at least in
host environments capable of displaying such instance names in
their GUI). It might also be necessary to think about a protocol to
enable OSC devices to switch between different instances of the
same Faust module.

4. CONCLUSION

The author believes that the approach sketched out above would
make operating Faust dsps via OSC much easier, besides the obvi-
ous practical benefits of saving precious UDP ports. Thus we think
that it is worth the design and implementation effort. Please note
that this has not been implemented yet. This short note is just there
to kick off the discussion and solicit comments from the developer
team and the wider Faust community.

We mention in passing that a similar approach is already be-
ing used with great success in the author’s faust˜ external for
Pd [2], which employs an OSC server running in Pd and allows
the instance names to be chosen manually by entering them as ar-
guments of the faust˜ objects. This is simpler than what we are
proposing here, however, since it provides one OSC server per Pd
instance, so the Faust modules and the OSC server all run in the
same process.

5. REFERENCES

[1] GRAME, Centre National de Création Musicale, Lyon,
FAUST Quick Reference, 2017.

[2] Albert Gräf, “Pd-Faust: An integrated environment for run-
ning Faust objects in Pd,” in Proceedings of the 10th Interna-
tional Linux Audio Conference, Stanford University, Califor-
nia, US, 2012, pp. 101–109, CCRMA.

IFC-2

http://www.zeroconf.org/

	1 Introduction
	2 The Problem
	3 A Solution
	4 Conclusion
	5 References

