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ABSTRACT

Folklore has it that Faust’s algebra of blocks can be repre-
sented in Hughes’ algebra of Arrows. In this paper we formalise
this understanding, showing that blocks can indeed be encoded
with Causal Commutative Arrows.

Whilst an interesting finding in itself, we believe that this for-
mal translation opens up new avenues of research. For instance, re-
cent work in functional reactive programming on well typed clocks,
could provide an alternative to the dependent type approach pro-
posed for multi-rate Faust.

1. INTRODUCTION

Faust is a domain specific programming language for Digital Sig-
nal Processing (DSP) based on the Algebra of Blocks [1, 2]. Hughes’
Arrows framework provides a generalization of function arrows to
computations [3]. It too can be used as a language for DSP com-
putations. What, if any, is the relationship between them? This is
the subject of the paper you are reading.

Arrows generalize monads, retaining composition, while re-
laxing the stringent linearity they impose. Arrows have been used
to express a wide variety of applications, often in the context of
Embedded Domain Specific Languages (EDSL) [4] within the host
Language Haskell [5]. A key application domain for arrows is
Functional Reactive Programming (FRP). Originally proposed by
Elliott and Hudak [6] in the context of functional animation, FRP
is a programming paradigm for reactive programming, based on
continuous signals. Signals (originally called behaviours by El-
liot) are defined as:

Signal ≈ T ime→ A

where A is the type of values carried by the signal. Taking

A = R

we get Faust’s signal function [2]. Unfortunately, unrestricted ac-
cess to signals makes it too easy to generate both time and space
leaks and to address this Hudak et al proposed using arrows to
structure FRP and in doing so introduced the world to Yampa, an
arrow framework for FRP [7].

Hughes’ arrows framework is not limited to DSP, which is at
the same time both an advantage and disadvantage. On the plus
side the use of arrows eliminates a subtle but paralizing form of
a space leak, as described by Lui et al [8], that is found in earlier
encodings of Functional Reactive Programming [6]. Additionally,
arrows introduce a meta level of computation that aids in reason-
ing about program correctness, transformation, and optimization.

Below, when we consider causality and Faust’s 1-sample delay, we
will see some of arrows’ disadvantages.

Arrows, analogous to other forms of computation, such as
monads [9], define a class of computations that are constructed
to conform to a given structure:

arr : (A→ B)→ A B
(>>>) : (A B)→ (B  C)→ (A C)
first : (A B)→ (A× C  B × C)

We write A  B for an arrow that consumes input of type A and
produces values of type B. The combinator arr lifts a function
from A to B to an arrow from A to B. The operator (>>>) is
sequential composition of two arrows, analogous to Faust’s : op-
erator, while first is used in the context of parallel composition,
lifting an arrow from A to B to an arrow that uses this arrow to
transform its first argument, while leaving its second untouched.

The observant reader might be asking why does the above def-
inition not include parallel composition? One of the key insights
of Hughes’, when defining arrows, was the observation that the
above combinators were enough to define all "interesting" combi-
nators on arrows. For example, parallel composition is defined in
terms of first , second, and >>>1:

(∗∗∗) : (A B)→ (C  D)→ (A× C  B ×D)
f ∗∗∗ g = first f >>> second g

Arrows, as specified above and in conjunction with a set of
laws (given later), define an abstract algebra for a set of structured
computations; to specialize to the domain of DSP, arrows become
computations on signals2:

DSP ≈ Signal A Signal B

When a value of type DSP is applied to an input signal of type
SignalA, it produces an output signal of type SignalB. Given this
definition we can define a stream of silence as:

silence = arr (λ(). 0.0)

and is of type:
Signal () Signal float

In Faust we might simply write:

silence = 0.0

1The definition of second is omitted here as it is easily defined in terms
of first and is instead given in Figure 3.

2This is Yampa’s stream function, which is in turn an instance of arrow
for function arrows of type Signal→ Signal [7].
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Another example is the addition stream in Faust:

process = +

defined in arrow DSP as:

process = arr (λ(x, y). x+ y)

which simply lifts the curried version of the addition operator to a
DSP arrow.

In Faust, say we want to connect the output of the + operator
to the input of abs, to compute the absolute value of the output
signal, then using sequential composition:

process = + : abs

and in arrow DSP:

process = arr (λ(x, y). x+ y) >>> arr abs

The translation of Faust’s parallel composition operator is slightly
more involved, but still straightforward. Consider the following
(stereo cable) example:

process = _, _

Faust’s identity, _, is represented as an arrow simply by lift-
ing the identity of the λ-calculus, arr (λx. x), and given this we
define the above as:

process = arr (λx. x) ∗∗∗ arr (λx. x)

What about Faust’s delay (mem), how is this encoded in Hughes’
arrows? As defined it is not possible! This is a limitation of
arrows; as originally defined they are not strong enough to cap-
ture all computations expressed by Faust—more laws are needed
to constrain the computation space and the introduction of a side-
effecting arrow is necessary. In particular, Hughes’ original def-
inition of arrows lacks laws for causality, future values must de-
pend only on values of the past. Functional Reactive frameworks,
such as Yampa [7], often specify that an arrow instance must have
causality, but leave rules for enforcement implicit. More con-
strained forms of computation, e.g. monads [9] and applicative
functors [10], are not general enough, and lack certain operators,
e.g. delay and associated laws, needed by Faust. Instead what
is needed is a specific form of arrow computations, called causal
commutative arrows (CCA) [11].

CCA extends arrows with a commutative law for parallel com-
position and with a general delay operator, i.e. one that introduces
a necessary side effect. In the context of DSP arrows this operator
provides a one sample delay, but is more general in other cases:

delay : A→ (A A)

which in the case of DSP arrows the application delay M is an
arrow that produces M for any t ∈ T ime ∧ t ≤ 1, otherwise at
time t(i+1) it generates the value passed at time ti. With this, given
a definition of an impulse in Faust:

impulse(x) = x−mem(x)

a translation into CCA is3:

impulse(x) = x− (x >>> delay 0)

3To aid reading we have used a slight abuse of notation to use a lifted
version of the operator −.

The final Faust construct we consider is the recursion operator,
∼, that enables cycles and includes an implicit one-sample delay.
To demonstrate the translation we use an example integrator that
takes an input signal M and computes an output signal N such
that N(t) = M(t) +N(t− 1):

process = + ∼ _

Hughes’ original definition of arrows did not include a recur-
sion operator, but later Patterson added a loop construct [12]:

loop : (A× C  B × C)→ A B

loop takes an arrow expecting an input argument (typeA), and
a feedback argument (type C), producing an output value (typeB)
and a value to feedback into the next iteration. The result of loop
is an arrow from A to B, i.e. the feedback is constrained inter-
nally. loop is a variant of Curry’s fixpoint combinator [13]. Unlike
Faust’s recursion operator loop′s feedback is not delayed and thus
an explicit one sample delay must be inserted, thus, while Patter-
son did not require the additional constraints that CCA imposes on
arrows, our translation must.

Given this discussion we can now give a translation of the
Faust iterator given above:

loop (arr swap >>> arr (λ(x, y). x+ y) >>>
arr (λx. x) &&& (delay 0.0 >>> arr (λx. x)))

The function swap simply swaps the values of a tuple, while
the arrow operator &&& is a specialized version of parallel com-
position that composes two arrows with the same input types con-
currently, fanning out a single input to each arrow. The type of
the above translation is analogous to the Faust recursion example,
given above, but in the context of DSP arrows:

float  float

i.e, an arrow (stream transformer) that consumes values of type
float and produces values of type float .

We have omitted discussion of the fan out (<:) and fan in (:>)
operators of Faust here as they are easily handled in our transla-
tion. Worry not, these are not forgotten and will be presented in
Section 3 along with the complete translation.

Clearly the syntactic noise of arrows is considerable, at least
in comparison to Faust. However, we believe this is a function
of Hughes choice of defining them within the context of Haskell,
rather than some inherent limitation of arrows themselves. In fact
it was in part our background in both functional programming and
audio processing that lead us to develop the translation proposed
in this paper. For the most part, we work with Hughes’ original
notation as it does not affect the translation. However, in later
sections, we return to the question of both an alternative syntax
for arrows, inspired by Faust, and an alternative system for type
checking arrow DSP.

It is folklore that Faust’s semantic model is very close to Hughes’
arrows, indeed Faust’s Wikipedia page [14] includes an informal
translation, but to our knowledge there does not exist a formal
analysis of this relationship. In this paper we provide a formal
translation from Faust’s Algebra of Blocks into a DSP instance of
arrows.

It is important to note that while Hughes’ original definition of
arrows and much of the later work has focused on an embedding in
Haskell, there is no fundemential connection between arrows and
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Syntax

Types A,B,C := float | A×B | () | A→ B
Terms L,M,N := X | x | (M,N) | () | fst L | snd L | λx. N | LM |
Environment‘s Γ,∆ := x1 : A1, ..., xn : An

Types

(x : A) ∈ Γ

Γ ` x : A

Γ, x : A ` N : B

Γ ` λx. N : A→ B
Γ `M : A→ B Γ ` N : A

Γ `M N : B

Γ ` () : ()
Γ `M : A Γ ` N : B

Γ ` (M,N) : A×B
Γ ` L : A×B
Γ ` fst L : A

Γ ` L : A×B
Γ ` snd L : B

Laws

(βx
1 ) fst (M,N) = M

(βx
2 ) snd (M,N) = N

(ηx) (fst L, snd L) = L
(β→) (λx. N) M = N [M/x]
(η→) λx. (L x) = L

Figure 1: Lambda Calculus

Haskell. In particular, there exists a categorical model, in terms of
monoidal categories, for arrows [15, 16] and it this definition that
drives the relation presented in this paper. It is not our intention
to imply that Faust could or should be translated into a Haskell
implementation of arrows. Rather, arrows provide an alternative
formal model for Faust, which might provide new an interesting
directions for future work.

The remainder of this paper is structured as follows:

• Section 2 captures the formal semantics of Faust’s algebra
of blocks and Lui et al’s causal commutative arrows;

• Section 3 provides details of the translation from the alge-
bra of blocks to the stream transformer instance of causal
commutative arrows;

• Section 4 takes a more informal look at recent develop-
ments in the application of monads within the context of
state transformers, the IO monad, and its potential use for
providing stronger types for Faust’s foreign function inter-
face; and

• Section 5 concludes with pointers to possible fruitful direc-
tions for the development of DSP languages based on Faust
and causal commutative arrows.

2. FORMALIZATION

Our definition of arrows, and in fact the corresponding definition
of the algebra of blocks, extends the core lambda calculus. We
first give a standard definition of lambda calculus, including typing
rules and the conventional rewrite laws, in Figure 1. We write X
for the set of constant terms, e.g. + : float → float → float ,
10 : float and so on, and no additional typing rules are necessary.

The extended arrow calculus4 is given in Figure 2. Our defi-

4In the most part we retain Hughes’ original definition of arrows and
while we use the term arrow calculus we do not use the definitions and
notation of Lindley [17], where the term originated.

nition of arrows is extended with recursion (the loop combinator)
and state (the delay operator), with rules derived from Liu’s causal
commutative arrows [18]. Figure 3 specifies a number of useful
definitions for both the lambda calculus and its extended arrow
variant.

As described in the introduction, the type A  B denotes a
computation that accepts a value of type A and returns a value of
type B, and in the presence of delay can perform side effects. As
is conventional we write a term typing judgment as Γ `M : A to
mean that the term M has type A in environment Γ. A judgment
Γ `M : A is valid under the rules defined in Figure 1 and for the
arrow combinators, given in Figure 2, types are added as constants
(i.e. c ∈ X).

While no additional typing rules are required for a type to be
a valid instance of an arrow it must define implementations for
each of these constants. It is not enough for an arrow definition to
simply implement these constants, they must also satisfy the laws
given at the bottom of Figure 2.

Figure 4 defines the algebra of blocks. We adopt a similar no-
tation to Orlarey et al [2], in particularA : IM → ON to represent
that a block-diagram A has IM inputs and ON outputs, defined:

inputs(A) = Ain[0]×Ain[1]× ...×Ain[IM−1]
outputs(D) = Aout[0]×Aout[1]× ...×Aout[IN−1]

Additionally to aid the translation, described in Section 3, we
assume the following short hand for working with tuples:

A0 ×A1 × ...×An−1 = A0 × (A1...(×An−1))
(x0, x1..., xn−1) = (x0, (x1, (... , xn−1)))

and fst i and snd i are defined pointwise in terms of fst and snd . It
is straightforward to define operations to add (+) and subtract (−)
both input and outputs and tuples values and types, for brevity we
omit their definitions.

Unlike the arrows definition given in Figure 2 typing rules,
following Orlarey et al [2], the meanings for the subset of lambda
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Syntax

Types A,B,C := ... | A B
Terms L,M,N := ... | delay | arr | (>>>) | ∗∗∗ | first | second | loop

Types

arr : (A→ B)→ (A B)
(>>>) : (A B)→ (B  C)→ (A C)
(∗∗∗) : (A B)→ (C  D)→ (A× C  B ×D)
first : (A B)→ (A× C  B × C)
loop : (A× C  B × C)→ A B
delay : A→ A A

Laws

( 1) arr id >>> f = f
( 2) f >>> arr id = f
( 3) (f >>> g) >>> h = f >>> (g >>> h)
( 4) arr (g · f) = arr f >>> arr g
( 5) first (arr f) = arr (f × id)
( 6) first (f >>> g) = first f >>> first g
( 7) first f >>> arr (id × g) = arr (id × g) >>> first f
( 8) first f >>> arr fst = arr fst >>> f
( 9) first (first f) >>> arr assoc = arr assoc >>> first f
( 10) loop (first h >>> f) = h >>> loop f
( 11) loop (f >>> first h) = loop f >>> h
( 12) loop (f >>> arr (id× k)) = loop (arr (id× k) >>> f)
( 13) loop (loop f) = loop (arr assoc−1 >>> f >>> arr assoc)
( 14) second (loop f) = loop (arr assoc >>> second f >>> arr assoc−1)
( 15) loop (arr f) = arr (trace f)
( 16) first f >>> second g = second g >>> first f
( 17) delay i ∗∗∗ delay j = delay (i, j)

Figure 2: Arrows

calculus terms remain the same, as defined in Figure 1. The inten-
tion here is the arrow calculus forms one extended variant of the
lambda calculus, as does the blocks algebra, but at this point it is
only the subset of lambda calculus terms that is valid in both. The
translation from the algebra of blocks to the stream transformer
instance of arrows, given in the following section enables one to
consider any term of the algebra of blocks to be valid in the arrows
variant of the lambda calculus, when arrows are considered as DSP
signal transformers.

3. TRANSLATIONS

We now consider the translation between the algebra of blocks into
arrows at the instance of stream transformers, and show that the
translation is sound.

The translation takes an algebra of blocks term M into an ar-
row JMKst:

JΓ `M : AKst = JΓKst ` JMKst : JAKst

The translation for environments (Γ) is defined pointwise and is
straightforward. The translation for terms and judgments is given
in Figure 7, while the translation for types is in Figure 6. This
translation is similar to the one given, informally, on Faust’s Wikipedia

page[14], although it includes a complete translation, along with a
modified, type correct(ed), version of the mapping for recursion,
i.e. ∼.

The only complications in the translation arise from Faust’s
rules for fanning out and in. For fanning out we must duplicate
the signal and in the case of fanning in, merge the signals using
addition. As the standard definition of arrows relies only on the
basic types of the simply typed λ-calculus, augmented with tuple
types, it does not directly support composing arrows with differing
numbers of input and output arguments. However, this is easily
"emulated" with parallel composition (∗∗∗), for example, consider
the Faust expression:

_ <: _,b f
A mono signal is duplicated and the resulting left and right

channels are copies of the original carrier, the function f applied
to the right channel, while the left channel is passed through. Ap-
plying the translation in Figure 7:

ida >>> dup2 >>> ida ∗∗∗ fa
where ida = arr id and fa is the arrow translation of f . The
arrow dup2 takes a single argument of typeA and produces a tuple
of type A×A, duplicating the argument 2 times, implemented as:

dup2 = arr (λx. (x, x))
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id : A→ A
id = λx. x
fst : A×B → A
fst = λz. fst z
snd : A×B → B
snd = λz. snd z
dup : A→ A×A
dup = λx. (x, x)
swap : A×B → B ×A
swap = λz. (snd z, fst z)
(×) : (A→ C)→ (B → D)→ (A×B → C ×D)
(×) = λf. λg. λz. (f (fst z), g (snd z))
assoc : (A×B)× C → A× (B × C)
assoc = = λz. (fst (fst z), (snd (fst z), snd z))
(·) : (B → C)→ (A→ B)→ (A→ C)
(·) = λf. λg. λx. f (g x)
second : A B → (C ×A C ×B)
second = λf. arr swap >>> first f >>> arr swap
(∗∗∗) : (A B)→ (C  D)→ (A× C  B ×D)
(∗∗∗) = λf. λg. first f >>> second g
(&&&) : (A B)→ (A C)→ (A B × C)
(&&&) = λf. λg. arr dup >>> f ∗∗∗ g

Figure 3: Lambda Calculus + Arrows Definitions

The arrow dupi is implemented in terms of the helper arrow
dup_auxi, which is a family of arrows, indexed by i ∈ N, that
duplicate their arguments i times:

dup_aux1 x = x
dup_auxi+1 x = (x, dupi x)

dupi, used in the translation in Figure 7, is then defined:

dupi = arr dup_auxi

Similarly pari is a family of arrows, indexed by i ∈ N, used
in the translation, that forwards i inputs in parallel. We first define
a helper:

par_aux1 = id
par_auxi+1 = id ∗ ∗ ∗ pari

and then:
pari = arr par_auxi

Faust’s fan out operator (<:) is easily defined in terms of ar-
rows’ sequential composition operator (>>>) and family of dupli-
cation arrows (dupi). For the fan in operator (:>) we must define
an additional family of merge functions (mergei), that sums pairs
of channels into a single channel. As above we define a helper
function:

merge_aux1 s = fst s+ snd s
merge_auxi+1 s = fst s+ merge_auxi (snd s)

and then:
mergei = arr merge_auxi

Although it is straightforward to emulate Faust’s differing num-
ber of arguments in arrows, it is syntactically a limitation of ar-
rows, as defined in Haskell. In Section 4 an alternative is dis-
cussed, based on an encoding of arrows in qualified types and re-
moved from the restrictions of Haskell’s type system.

To complete this section we state a soundness theorem for our
translation.

Theorem 1. If Γ `M : IM  B OM and Γ ` N : IM  B OM

are typing judgments in the algebra of blocks, such that M = N
under the laws give in Figure 4 and the semantics of blocks given in
Orlarey et al [2]. Then there exists JΓ ` M : IM  B OM Kst =
JΓKst ` JMKst : JIM  B OM Kst and JΓ ` N : IN  B ON Kst =
JΓKst ` JNKst : JIN  B ON Kst, such that JMKst = JNKst un-
der the laws given in Figure 1 and Figure 2.

The proof follows by induction over M .

4. A NEW APPROACH TO FOREIGN CALLS

Faust does not provide a general mechanism for side-effects and
instead allows them only through its language for interfaces, such
as the one used for describing GUIs for interaction with Faust pro-
grams, e.g. sliders, pots, etc. Faust also provides the ability to
connect MIDI/OSC interfaces in a similar manner. Both of these
capabilities provide limited, i.e. controlled, side-effects and in it-
self this is fine. However, Faust also provides the ability to call any
C function through its foreign function interface:

ffunction(< function− declaration >,
< include− file >,< library >)

where the function-declaration must be of the form

< type > fn(< type >);

where < type > is either int or float . In addition, the input
type can be omitted, indicating no input argument. Thus,

< function− declaration >

means one of the following:

int fn(int);
int fn(float);
float fn(int);
float fn(float);
intfn();
float fn();

Of course, the intention of the foreign interface is to provide
Faust programs to access pre-existing DSP libraries or other highly
optimized functions written in C, but, in general, additional side-
effects can go unchecked! A consequence of this approach is that
even though Faust itself is a (mostly) functional language there are
no checks or design constraints placed within the type system to
enforce (really control) this with the outside world.

An approach to structuring side-effects, in a type safe manner,
was proposed by Wadler [19] using Moggi’s monadic interpreta-
tion of denotational semantics [9]. Analogous to our earlier defi-
nitions for arrows, monads define a class of computations that are
constructed to conform to a given structure5:

(>>=) : mA→ (A→ mB)→ mB
return : A→ mA

5For conciseness we give only a minimal definition of monads, the in-
terested reader can consult [19, 9].
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Syntax

Types A,B,C := ... | A B B
Terms L,M,N := ... | ! | mem | _ | ,b | : | <: | :> | ∼

Types

Γ `M : IM  B OM Γ ` N : IN  B ON OM = IN
Γ ` (M : N) : IM  B ON

Γ `M : IM  B OM Γ ` N : IN  B ON

Γ ` (M,bN) : IM + IN  B OM +ON

Γ `M : IM  B OM Γ ` N : IN  B ON ON ≤ IM IN ≤ OM

Γ ` (M ∼ N) : IM −ON  B OM

Γ `M : IM  B OM Γ ` N : OM ∗ k  B ON OM [i] = IN [i+ j ∗OM ] j < k

Γ ` (M <: N) : IM  B ON

Γ `M : IM  B IN ∗ k Γ ` N : IN  B ON IN [i] = OM [i+ j ∗ IN ] j < k

Γ ` (M >: N) : IM  B ON

_ : A B A
! : A B ()

mem : float  B float

Laws

(ba1) ((A : B) : C) = (A : (B : C))
(ba2) ((A,bB),b C) = (A,b (B,b C))
(ba3) ((A <: B) <: C) = (A <: (B <: C))
(ba4) ((A :> B) :> C) = (A :> (B :> C))

Figure 4: Block Diagram Algebra

where m is a monad and any instance must satisfy the following
laws:

return M >>= N = M N
M >>= return = M
M >>= return · f = map f M
M >>= (λx. N x >>= H) = (M >>= N) >>= H

But what do monads buy us? Monads bring modularity and by
defining an operation monadically, it is possible to hide underlying
machinery in a way that allows new features to be incorporated
into the monad transparently. This enables the functional aspect
of a language, for example, to remain functional and untouched
by less pure, i.e. side-effecting, code. Walder gives numerous
examples of useful monads, but maybe the most interesting in this
context is the state monad [19]. The monad m for the state monad
SM is defined as:

SM A = SM (S → (A,S))

where A is the result type of a (potentially) stateful computation
and S is the type of state. In other words SM is the type of com-
putations that implicitly carries a state of type S. We omit the full
definition of SM here, see Wadler’s paper for an example imple-
mentation [19]. Combined with Haskell’s do-notation[5] the state

monad provides a powerful approach to implementating stateful
computations that are combined with the pure in a type safe man-
ner. The state monad is just one example of an interesting monad
and like arrows they provide a powerful abstraction of computa-
tion.

Haskell, for example, approaches foreign function calls through
a special IO monad [20]. We could easily recast Faust’s function
declarations for foreign calls within the IO monad, which would
have types:

fn : int→ IO int
fn : int→ IO float
fn : float → IO int
fn : float → IO float
fn : ()→ IO int
fn : ()→ IO float

It seems likely that the intention of Faust’s foreign function
calls, is for the implementations to be stateless, at least in a way
that would be visible to the calling program. Thus, enforcing that
they all appear in the IO monad could place additional restrictions
on the compiler that limit optimization. A less drastic approach
would be to parametrize foreign function calls by a monadm. The
programmer would then explicitly state what monad a particular
foreign call was to be executed in.
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type SF a b = SF {unSF : a→ (b, SF a b)}

arr f = SF h
where h x = (f x, SF h)

first f = SF (h f)
where h f (x, z) = (λs. (fst s, SF (h (snd s))) (unSF f x)

f >>> g = SF (h f g)
where h f (x, z) = (λs. (λs′. (fst s′, SF (h (snd s) (snd s′)))(unSF g (fst s))) (unSF f x)

loop f = SF (h f)

where h f x =
let ((y, z), f ′) = unSF f (x, z)
in (y, SF (h f ′)))

delay i = SF (h i)
where h i x = (i, SF (h x))

Figure 5: Causal Stream Transformer

JfloatKst = float
JA×BKst = JAKst × JBKst
J()Kst = ()
JA→ BKst = JAKst → JBKst
JA B BKst = JAKst  JBKst

Figure 6: Block Algebra types to Stream Transformer Arrows

An immediate advantage of this is that we can return to Faust’s
current definition of foreign calls setting6

m = Identity,

i.e. the identity monad, which is easily optimized away.
Until now we have proposed the idea of introducing a monad

interface for foreign function calls to Faust and could eventually
consider extending Faust to allow use of additional monads. But
for this to make sense, then Faust’s semantics, both static and dy-
namic, must also be extended and this is were the translation to ar-
rows can play a practical role as well as a theoretical one. Recent
work by Perez et al introduce Monadic Stream Functions (MSF),
a generalization of Yampa’s stream transformer arrow [21]. Put
simply a MSF is an arrow that can be computed within a given
monad.

Perez et al define a MSF type and an evaluation function that
applies an MSF to an input and returns, in a monadic context, an
output and a continuation. We give only the type here:

MSF mA B = A→ m (B,MSF mA B)

The observant reader will note that the definition of MSF is the
stream transformer given in Figure 5 parametrized by the monad
m. Perez et al provide a proof that MSF is indeed an arrow and in
fact it can be shown that it additionally satisfies the laws needed by
the definition of CCA [21]. Thus, letting A and B be equal to R
gives rise to a DSP arrow instance that is a target for the translation
given in Section 3.

6We omit the definition of the identity monad as it is straightforward.

5. CONCLUSION

We have described a translation from Faust’s Algebra of Blocks
to a causal commutative variant of Hughes’ arrows framework.
While it is known that these languages are similar, to our knowl-
edge, this is the first formal encoding. Our experience developing
a DSP based DSL on arrows has benefited from developments in
both Faust and Functional Reactive Programming, and to date our
implementations works well in practice. By formalizing this rela-
tionship we open up a path to alternative approaches to composing
control within Faust.

There are a number of areas for further work including:

• Faust is a excellent DSP programming language, with its
concise syntax and powerful type system. However, it seems
reasonable that the translation described in this paper could
be used to develop and formalize new extensions, e.g. ex-
posing embedded micro controller interfaces (such as GPIO),
in a type safe manner. Monadic stream functions (DSP ar-
rows) might be combined with a clock monad, providing an
approach to resamping and scheduling.

• Our goal is to target embedded devices using a DSL called
�AUDIO� that provides a research framework for build-
ing and playing with low-latency digital instruments and
controllers. Inspired by the Bela platform [22], but using
low-cost ARM Micro controllers for control and DSP pro-
cessing, we are designing a type safe framework for explor-
ing the composition of different DSLs for both control and
DSP programming. Like Stride [23], �AUDIO� is de-
signed with exposing the I/O pins, both analog and digital,
in mind. Following similar arguments made in this paper
we believe recent work on remote monads can provide a
type safe and composable approach to connecting the low-
level world of electronics to high-level abstractions for dig-
ital instrument design [24, 25].

• Faust’s syntax is very concise and while the syntax of
�AUDIO� is more refined than Hughes’ embedding in
Haskell, there is more that can be learned from Faust’s ap-
proach. Future work could try to address the limitations
of �AUDIO�′s syntax by adopting one closer to Faust’s,
while remaining solely within the domain of DSP arrows.
By staying with the arrow framework and more generally
within a type system built on qualified types it is possible
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JΓ ` x : AKst = JΓKst ` x : JAKst

JΓ ` _ : A B AKst = JΓKst ` arr id : JA B AKst

JΓ `! : A B ()Kst = JΓKst ` arr (λx. ()) : JAKst  ()

JΓ `M : floatKst
JΓ ` mem M : floatKst = JΓKst ` JMKst >>> delay 0 : float

JΓ ` M : IM  B OM Kst = JΓKst ` JMKst : JIM  B OM Kst
JΓ ` N : IN  B ON Kst = JΓKst ` JNKst : JIN  B ON Kst OM = IN

JΓ ` (M : N) : IM  B ON Kst = Γ ` JMKst >>> JNKst : JIM Kst  JON Kst

JΓ `M : IM  B OM Kst = JΓKst ` JIM Kst : JIM  B OM Kst
JΓ ` N : IN  B ON Kst = JΓKst ` JIN Kst : JIN  B ON Kst

JΓ ` (M,bN) : IM + IN  B OM +ON Kst = JΓKst ` JMKst ∗∗∗ JNKst : IM + IN  B OM +ON

JΓ ` M : IM  B OM Kst = JΓKst ` JMKst : JIM  B OM Kst
JΓ ` N : OM ∗ k  B ON Kst = JΓKst ` JNKst : JOM ∗ k  B ON Kst
OM [i] = IN [i+ j ∗OM ] j < k

JΓ ` (M <: N) : IM  B ON Kst = JΓKst ` JMKst >>> dup(k−1) >>> JNKst : JIM  B ON Kst

JΓ `M : IM  B IN ∗ kKst = JΓKst ` JMKst : JIM  B IN ∗ kKst
JΓ ` N : IN  B ON Kst = JΓKst ` JNKst : JIN  B ON Kst
IN [i] = OM [i+ j ∗ IN ] j < k

JΓ ` (M >: N) : IM  B ON Kst = JΓKst ` JMKst >>> merge(k−1) >>> JNKst : JIM  B ON Kst

JΓ `M : IM  B OM Kst = JΓKst ` JMKst : JIM  B OM Kst
JΓ ` N : IN  B ON Kst = JΓKst ` JNKst : JIN  B ON Kst

JΓ ` (M ∼ N) : IM + IN  B OM +ON Kst =
JΓKst ` loop (arr swap >>> JMKst >>> arr id &&& (delay 0 >>> JNKst)) : JIM + IN  B OM +ON Kst

Figure 7: Block Algebra values to Stream Transformer Arrows

to apply many of the developments in monads, etc. without
the need to develop additional heavyweight type systems.
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